
Formal Specification of Non-functional Properties of
Component-Based Software

Steffen Zschaler

Dresden University of Technology
steffen.zschaler@inf.tu-dresden.de

Abstract. Non-functional or extra-functional properties of a software system are
at least as important as its somewhat more classical functional properties. They
must be considered as early as possible in the development cycle in order to avoid
costly failures. This is particularly true for a modern component-based approach
to software development. In this paper we show a formal specification of time-
liness properties of a component-based system, as an example for a formal ap-
proach to specifying non-functional properties. The specification is modular and
allows reasoning about properties of the composed system.

1 Introduction

It is now widely recognized that the so-called non-functional or extra-functional prop-
erties of a software system are at least as important as its somewhat more classical
functional properties and that, therefore, they must be considered as early as possi-
ble in the development cycle in order to avoid costly failures [1]. Operating systems
research—especially research in the area of real-time systems—performance analysis
and prediction research, and research in security have produced a wealth of results de-
scribing how to analyse, predict, or guarantee selected non-functional properties of ap-
plications (cf. e.g., [2, 3]). However, all these approaches work at a rather low level—for
example, they use concepts like tasks, periods, memory pages, queuing networks, etc.
These concepts on their own are not sufficient to model today’s increasingly complex
software systems.

Component-based software engineering [4] offers a way to partition complex sys-
tems into well-defined parts. The relevant properties of these parts are precisely speci-
fied, so that these parts in principle can be developed independently and assembled at a
later time, and possibly even by a different person than the original developer. Func-
tional issues of component-based software engineering have been well investigated
(e.g., [4, 5]), but very little research has been performed concerning non-functional
properties. For example, the higher-level component-based concepts still have to be
mapped to the lower-level concepts from real-time system research.

In our work, we investigate this mapping by providing a semantic framework which
explains how the different parts of a component-based system work together to deliver
a certain service with certain non-functional properties. In a previous paper [6] we have
defined the basic concepts of this framework. In this paper we show how these concepts



can be expressed formally, explaining important structuring techniques for specifica-
tions of non-functional properties. We use an example describing timeliness properties
of a simple component system.

We first give a very short overview of the overall framework in Sect. 2, before the
main section of this paper—Sect. 3—discusses the example in some detail. The paper
closes with an overview of related work, a summary and an outlook to future work.

2 System Model

In this section we give an overview of the system model underlying the semantic con-
cepts for non-functional specifications. This serves as an introduction to our approach,
and is a very condensed version of [6].

Users view a system in terms of theservicesit provides. They do not care about
how these services are implemented, whether by monolithic or component-structured
software. A service is a causally closed part of the complete functionality provided by
a system.Componentsprovide implementations for services. As has been pointed out
in the literature [7, 8] a component can provide implementations for multiple services.
In addition, services can be implemented by networks of multiple cooperating compo-
nents. In order to provide a service the system needs certainresources. A resource can
essentially be anything in the system which is required by an application (see e.g., [3,
9], in our case the “application” includes both components and the container). The most
important properties of a resource are that it can be allocated to, and used by, applica-
tions, and that each resource has a maximum capacity. We do not consider resources
with unlimited availability, because they do not have any effect on the non-functional
properties of an application. The components implementing a service require a run-
time environment to be executed. We call this runtime environment thecontainer.The
container manages and uses the components, and requests resources, such that it can
provide the services clients require.

We distinguish two types of non-functional properties:

1. Intrinsic propertiesdescribe component implementations. They can be meaning-
fully expressed without considering how the component is used.

2. Extrinsic propertiesare the result of using components with certain intrinsic prop-
erties. They express the user’s view on a system, including effects of resource avail-
ability, container decisions, and so on.

3 A Formal Example

In this section we are going to examine in detail a formal specification of an example
system. This is a very simple system, which consists of one component providing one
service through one operation. The only relevant non-functional properties are response
time of the service (required to be less than 50ms) and worst case execution time of the
component (known to be 20ms); the only relevant resource is a CPU. The container
simply attempts to create a single instance of the component and to use it to serve re-
quests. The CPU available is scheduled by rate monotonic scheduling (RMS, [2]). We



use extended temporal logic of actions (TLA+, [10]) to describe our system. The logic
is a temporal logic where states are represented as values assigned to state variables. An
expression containing primed variables (e.g.,a ′) is an action and constrains a state tran-
sition. As usual� means for all states. The operator+−. is a special type of implication
which is useful for rely–guarantee specifications [11].A +−. B essentially asserts that
the system will guaranteeB at least as long asthe environment guaranteesA. Because
the specifications are pretty long already for this simple example we will only include
the salient parts in this paper.1

We begin by modelling the response time property of the service. To be able to
express our requirement we must first defineresponse time of a servicebefore we can
use this term to express constraints on the response time. We define response time using
two layers of specifications, so that the complete property will be expressed by three
layers of specifications:

1. A specification defining a so-calledcontext modelfor the subsequent response time
definition. This essentially models the features of a “service” that are relevant to
defining response time of a service. We call this thecontext model layer.

2. In a second specification we add history variables [12] to the context model spec-
ification to define the meaning of response time. Because we use history variables
the original behaviour defined by the context model is not changed: We are merely
adding probes which measure certain aspects of this behaviour. Separating this in a
module of its own allows us to reuse context models for defining different extrinsic
properties. For example, we can use different meanings of response time: the time
from sending of a service request from the client to reception of the response by the
client or the time from reception of a service request by the server to the sending of
the corresponding response, resp. We have shown in another publication [13] that
both interpretations can be formally specified using the same context model. We
call this layer of specifications themeasurement layer.

3. Finally we specify the actual system under consideration. This means, we write
down concrete constraints over response time of the service, expressing our re-
quirements on the system to be built. We call this thesystem layer.

Here, the first two layers together comprise the definition of response time. The third
layer applies response time to a specific system, thus defining concrete constraints with
concrete upper bounds for the response time of the service under consideration.

Figure 1 shows the formal specification of the context model for a service. This
specification uses two variablesunhandledRequest , a BOOLEAN indicating whether a
request is in the system, andinState a variable giving the current state of the service
which can be eitherIdle—that is, the service is not doing anything—orHandlingRe-
quest if the service is currently working on a request. The remaining specification is
very much a canonical TLA+ specification. Note that it is an open specification of a
service recognisable by the formulaService ∆= EnvSpec +−. ServiceSpec (line 34)
stating that aService must only fulfil ServiceSpec at least as long as the environment
adheres toEnvSpec.

1 Interested readers can download the complete specification from
http://www.inf.tu-dresden.de/˜sz9/publications/NfC04/



1 module Service
2 variable inState
3 variable unhandledRequest

5 vars ∆= 〈inState, unhandledRequest〉

7 Idle ∆= choose p : true
8 HandlingRequest ∆= choose p : p 6= Idle

10

12 InitEnv ∆= unhandledRequest = false

14 RequestArrival ∆= ∧ unhandledRequest = false ∧ unhandledRequest ′ = true
15 ∧ unchanged inState

17 EnvSpec ∆= ∧ InitEnv
18 ∧2[RequestArrival ]unhandledRequest

19

21 InitServ ∆= inState = Idle

23 StartRequest ∆= ∧ inState = Idle ∧ unhandledRequest = true
24 ∧ inState ′ = HandlingRequest ∧ unhandledRequest ′ = false

26 FinishRequest ∆= ∧ inState = HandlingRequest ∧ inState ′ = Idle
27 ∧ unchanged unhandledRequest

29 NextServ ∆= StartRequest ∨ FinishRequest

31 ServiceSpec ∆= ∧ InitServ
32 ∧2[NextServ ]vars
33

34 Service ∆= EnvSpec +−. ServiceSpec
35

1

Fig. 1. Context model for a service offered by a system. The specifications have been abridged
for space considerations.

The actual specification of the response time measurement is given in a separate
module—shown in Fig. 2—instantiating the service definition from Fig. 1 asServ on
line 6. In TLA+, instantiation makes every symbolX defined in moduleService avail-
able asServ !X in moduleResponseTimeConstrainedService. The specification is
a canonical specification, however the individual actions have a special form and are
combined by conjunction. Each action is written as an implication from an action of
the original service specification to a conjunction of consequences affecting only the
history variablesLastResponseTime (the response time measured for the last request
serviced) andStart (a helper variable). Finally this specification is conjoined to the
original service specification, which in effect adds the consequences to the actions of
Service as can be verified by simple TLA+ reasoning. The moduleRealTime defines
formulaRTnow and variablenow , which is a representation of real time as described
in [12].

Finally, the requirement on our actual service is expressed by the formula

�(LastResponseTime ≤ 50)

assuming that we usenow to measure time in milliseconds.



1 module ResponseTimeConstrainedService
2 extends RealTime

4 variables LastResponseTime, inState, unhandledRequest , Start
5

6 Serv ∆= instance Service

8 Init ∆= Start = 0 ∧ LastResponseTime = 0

10 StartNext ∆= Serv !StartRequest ⇒ Start ′ = now

12 RespNext ∆= Serv !FinishRequest ⇒ LastResponseTime ′ = now − Start

14 Next ∆= StartNext ∧ RespNext

16 vars ∆= 〈inState, unhandledRequest , Start , LastResponseTime〉

18 RespSpec ∆= ∧ Init
19 ∧2[Next ]vars

21 Service ∆= ∧ Serv !Service
22 ∧ RTnow(vars)
23 ∧ RespSpec
24

1

Fig. 2.Definition of response time

The specification of execution time of a component’s operation mainly differs by
providing an additional value for theinState variable, namelyInEnvironment , which
signifies that the component would normally handle a request, but cannot do so, because
it does not have access to all the resources it requires or has handed some subtask to
another component. The definition of execution time takes this into account, counting
only the time when the component is actually executing. Apart from this difference the
structure of the component specification is similar to that of the service specification.
We will therefore not discuss this specification in full detail in this paper.

The specification of the CPU is also very similar in structure. The context model
layer describes what a CPU does by providing one variableAssignedTo which in turn
receives any value between1 andTaskCount . The measurement layer then adds history
variables which measure the amount of time per period allocated to each task scheduled
on the CPU. Finally, there is a system layer specification which describes the specifics
of a CPU scheduled by RMS. This part of the specification is a bit different from the
specifications we have seen so far, because the specific constraints for a resource look
different than those for components or services:

�Schedulable +−. �TimedCPUSched !ExecutionTimesOk

The specification consists of two parts asserting that as long as the schedulability crite-
rion Schedulable is fulfilled (i.e., the CPU’scapacityis not exceeded), all tasks sched-
uled will meet their respective deadlines.Schedulable is the well-known schedulability
criterion for RMS scheduled CPUs (see [2] for further discussion).



The specification of the container is fundamentally different from the specifications
we have seen before. A container specification is essentially a big implication, express-
ing that

If

1. certain components are available,
2. certain resources (e.g., CPU) enable certain aspects (e.g., execution of a given num-

ber of tasks with given execution times, periods, and deadlines), and
3. the system environment obeys certain rules

then the container will ensure that the system as a whole has a certain property.
We use a very simple container specification: The container expects a component

with an execution time (given by the parameterExecutionTime) of less than the ex-
pected response time (given by the parameterResponseTime) to be available:

∧ ExecutionTime ≤ ResponseTime
∧ ComponentMaxExecTime(ExecutionTime)

Furthermore it expects the CPU to be able to schedule exactly one task with a period
(and deadline) equal to the required response time, and a worst case execution time
equal to the one given as a parameter:

CPUCanSchedule(1,
[n ∈ {1} 7→ ResponseTime],
[n ∈ {1} 7→ ExecutionTime])

Finally, it expects the environment to send requests with at leastResponseTime time
units between requests:MinInterrequestTime(ResponseTime). These expectations
are combined by conjunction into formulaContainerPreCond . If all these pre-condi-
tions hold, the container can use exactly one instance of the component to provide the
service. This is expressed in the conclusion of the specification:

ContainerPostCond ∆= ∧ ServiceResponseTime(ResponseTime)
∧ �∧ TaskCount = 1

∧ Periods = [n ∈ {1} 7→ ResponseTime]
∧Wcets = [n ∈ {1} 7→ ExecutionTime]

∧ �(CmpUnhandledRequest = EnvUnhandledRequest)

ComponentMaxExecTime, CPUCanSchedule, MinInterrequestTime, and
ServiceResponseTime are defined in the container specification using the respective
measurement layer specifications This means that the container does not assume con-
crete resources, components or services. The complete container specification is then
ContainerPreCond +−. ContainerPostCond .

Now we have specified all the individual parts of our system and it only remains to
put them together. Fortunately, this is very simple for a TLA+ specification, because
“composition is conjunction” [14]. Composing component, CPU, and container spec-
ification we arrive at a specification of ourSystem. We want to show that our system



is feasible, that is, that it has sufficient resources and a component and container im-
plementation available to provide services with a maximum response time of 50ms.
Specifically, we expect our system to adhere to the following specification:

ExternalService ∆= Environment(RequestPeriod) +−. Service(50)

that is: as long as the environment sends request with a minimum time distance of
RequestPeriod , the system will provide services with a maximum response time of
50ms. We can formalise our proof obligation by

IsFeasible ∆= System ⇒ ExternalService

and use the composition theorem from [14] to prove this property. For lack of space we
cannot show the proof in this paper, but it is relatively straight forward. We need to pose
one additional constraint on theRequestPeriod parameter, namely that it is greater or
equal the expected response time.

4 Related Work

In his thesis [15] Aagedal defines CQML, a specification language for non-functional
properties of component-based systems. The definition remains largely at the syntactic
level, semantic concepts are mainly explained in plain English without formal founda-
tions. Staehli [16] describes a formal technique for specifying non-functional properties
of multimedia presentations. As an extension and combination of these efforts, the two
authors recently and independently of our research published a short paper on “QoS
Semantics for Component-Based Systems” [17]. Their work is restricted to timeliness
and data quality properties and does not cover resource demand at all. In contrast, we
use more abstract definitions which cover any kind of measurement, including but not
limited to timeliness and data quality. Also, resource demand and resource allocation
is a central element of our semantic domain. The authors have so far presented only an
intuitive explanation of their approach, but no formal specifications yet.

Hissam et al. [18] describe a prediction-enabled component technology (PECT).
This work is very similar to our work in that it attempts to provide a framework in
which specific analysis methods and specific component models can be combined.
However, their work is somewhat more abstract. Also, they seem to be exclusively con-
cerned with modularisation into components, whereas our work explicitly takes into
account the container and resources as an important yet separate part of an overall sys-
tem. Bertolino, Mirandola and Vincenzo [19, 20] presented work attempting to merge
techniques from software performance engineering with component-based software en-
gineering. They distinguish two model layers: the software model which represents the
logical component structure of a system, and the machinery model which models prop-
erties relevant for performance analysis. In contrast to our work they are more interested
in performance predictions than in feasibility analysis.

5 Conclusions

In this paper we have shown an example of formal specification of timeliness properties
of a simple component-based system, based on the semantic framework defined in [6].



The main contribution of this paper is to show how these concepts can be expressed
formally, using TLA+. Our style of specifying allows us to reason about the response
time of a system constructed from a specified resource, component and container. An
important feature of these specifications is that they can be written independently and
later be assembled to a specification of a complete system. This allows us to ‘divide
and conquer’ the specification problem, potentially even by having different people
write different parts of the specification. For example, middleware vendors can write
container specifications, and component developers can write component specifications.
Application assemblers finally compose all specification into a system specification. It
is important to point out that timeliness is only used as an example, the approach is also
appropriate for other properties.

Of course, there also remain some questions to be answered. There are three main
directions in which we will extend this approach in our ongoing research:

1. We will provide support for services implemented by networks of components. We
intend to solve this by providing a more complex container specification, which
takes into consideration abstract descriptions of component networks, orarchitec-
tural constraints—essentially providing a characterisation of classes of applica-
tions (resp. their topologies) the container can support. Based on this the container
specification can then express how the components and resources are used to pro-
vide for the required non-functional properties.

2. We will provide support for specifying constraints on multiple non-functional prop-
erties. While this could already be done with the approach described in this paper,
the challenge here is to do it in a modular way, so that every non-functional prop-
erty can be specified independently and the specifications can be merged to provide
a specification of the complete system.

3. We have only talked about abstract systems in this paper. In order to apply our ap-
proach to concrete systems with concrete components and services (e.g., a stock
quoting application), we need to define mappings between context models and ap-
plication models and to apply them to our specifications. The issue of mappings
between context models has been treated in another paper together with Simone
Röttger [13].

The formalism we introduced in this paper and in [6] merges component-based
software engineering and specification of non-functional properties. It thus allows the
non-functional properties of a component-based system to be considered and analysed
as early as possible in the design process, and thereby helps avoid costly mistakes. Be-
cause the individual parts of the specification can be written independently, the approach
also supports a component-off-the-shelf market, where components are developed and
formally described by parties independent of the party who combines them to form an
application.

Acknowledgements

I would like to thank Heinrich Hussmann, Sten Löcher, and the reviewers for their
comments which helped me get my ideas and their presentation straight. This work was
funded by the German Research Council as part of the COMQUAD project.



References

1. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. The Kluwer international series in software engineering. Kluwer Academic
Publishers Group, Dordrecht, Netherlands (1999)

2. Liu, J.W.S.: Real-Time Systems. Prentice Hall, NJ (2000)
3. Tanenbaum, A.S.: Modern Operating Systems. 2nd edn. Prentice Hall (2002)
4. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-

Wesley Publishing Company (1997)
5. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying Component-

Based Software. Addison Wesley Longman, Inc. (2001)
6. Zschaler, S.: Towards a semantic framework for non-functional specifications of component-

based systems. In Steinmetz, R., Mauthe, A., eds.: Proc. EUROMICRO Conf. 2004, Rennes,
France, IEEE Computer Society (2004)

7. Krüger, I.H.: Service specification with MSCs and roles. In: Proc. IASTED Int’l Conf. on
Software Engineering (IASTED SE’04), Innsbruck, Austria, IASTED, ACTA Press (2004)

8. Salzmann, C., Schätz, B.: Service-based software specification. In: Proc. Int’l Workshop on
Test and Analysis of Component-Based Systems (TACOS) ETAPS 2003. Electronic Notes
in Theoretical Computer Science, Warsaw, Poland, Elsevier (2003)

9. Gósciński, A.: Distributed Operating Systems: The logical design. Addison-Wesley Pub-
lishers Ltd. (1991)

10. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley (2002)

11. Jones, C.B.: Specification and design of (parallel) programs. In Manson, R.E.A., ed.: Pro-
ceedings of IFIP ’83, IFIP, North-Holland (1983) 321–332

12. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM ToPLaS16 (1994)
1543–1571

13. R̈ottger, S., Zschaler, S.: Model-driven development for non-functional properties: Refine-
ment through model transformation. In: Proc.<<UML>> Conf. (2004) To appear.

14. Abadi, M., Lamport, L.: Conjoining specifications. ACM ToPLaS17 (1995) 507–534
15. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems. PhD

thesis, University of Oslo (2001)
16. Staehli, R., Walpole, J., Maier, D.: Quality of service specification for multimedia presenta-

tions. Multimedia Systems3 (1995)
17. Staehli, R., Eliassen, F., Aagedal, J.Ø., Blair, G.: Quality of service semantics for component-

based systems. In: Middleware 2003 Companion, 2nd Int’l Workshop on Reflective and
Adaptive Middleware Systems. (2003)

18. Hissam, S.A., Moreno, G.A., Stafford, J.A., Wallnau, K.C.: Packaging predictable assembly.
In Bishop, J., ed.: Proc. IFIP/ACM Working Conf. on Component Deployment (CD 2002).
Volume 2370 of LNCS., Berlin, Germany, Springer-Verlag (2002) 108–126

19. Bertolino, A., Mirandola, R.: Towards component based software performance engineering.
In: Proc. 6th Workshop on Component-Based Software Engineering: Automated Reasoning
and Prediction at ICSE 2003, ACM/IEEE (2003) 1–6

20. Grassi, V., Mirandola, R.: Towards automatic compositional performance analysis of
component-based systems. In Dujmović, J., Almeida, V., Lea, D., eds.: Proc. 4th Int’l Work-
shop on Software and Performance WOSP 2004, California, USA, ACM Press (2004) 59–63


