
Aspect Orientation for Your Language of Choice

Florian Heidenreich, Jendrik Johannes, and Steffen Zschaler

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
{florian.heidenreich|jendrik.johannes|steffen.zschaler}

@tu-dresden.de

Abstract. Modern software development uses lots of so-called domain-specific
languages (DSLs), providing domain-specific abstractions as a means to cope
with the increasing complexity of modern software systems. While such lan-
guages are developed with a strong focus on the domain issues they are to ad-
dress, more technical considerations of language engineering are typically left
out. This can become problematic when the size of descriptions or programs in
such a DSL increases, leading eventually to a need for advanced modularisa-
tion techniques, such as aspect orientation. To counter the complexities involved
in designing modularisation for every new DSL, this paper shows a generic ap-
proach for implementing aspect orientation for arbitrary languages. The approach
is especially useful for declarative DSLs, but can be used for other languages as
well.

1 Introduction

Modern software development faces continually more complex domains and require-
ment sets. To cope with these complexities and separate them from the complexities in-
herent to programming and software development, many projects use so-called domain-
specific languages (DSLs) as an abstraction of typical concepts from the domain and of
their realisation in a software system. As a result, we see a large number of computer
languages being developed, often under some amount of pressure to meet deadlines.
These languages are typically focused on the specific domain issues they are intended
to describe; other more technical issues of language development—for example, mod-
ularisation support—are often left out.

However, as programs and descriptions in these DSLs become larger, modularisa-
tion techniques, such as, for example, aspect orientation, are required for them. Sup-
porting these modularisation techniques normally requires manual implementation of
specialised support for every language. This is a costly and potentially error-prone step.

To reduce effort and potential for errors, this paper presents a generic approach that
can be easily adapted to provide aspect orientation for arbitrary languages. This ap-
proach is based on invasive software composition (ISC) [1] and its implementation in
Reuseware [2, 3]. It is, therefore, based on rewriting source code. Thus, the approach
presented is especially useful for declarative DSLs that will later be interpreted. How-
ever, it can just as well be used for any other type of DSL, although more efficient
results may be achieved if the larger effort of a manual implementation is invested.

To enable language-independent aspect-orientation, we must enable aspect com-
position to be expressed independently of the software artefacts’ implementation lan-
guage. For this purpose we use the language-independent composition concepts of
Reuseware. We enhance these concepts by introducing the notion of fragment queries
to group model or source code fragments. This enables us to implement the properties
of quantification [4], which is a powerful notion to select sets of joinpoints. To illustrate
applicability of the concepts, we demonstrate two example usages of our implementa-
tion of aspect orientation: one based on UML and one based on Java.

To give an overview of ISC and Reuseware we briefly discuss the fundamental con-
cepts in Sect. 2. After this, we introduce and exemplify new concepts for supporting
language-independent aspect-orientation in Sect. 3. The paper concludes with a discus-
sion of related work and a summary.

2 Reuseware Composition Framework

The work we present in this paper is implemented based on the Reuseware Composi-
tion Framework [2, 3]. The concepts behind the framework have their roots in Invasive
Software Composition [1]. Hence, we start by summarising the most important ISC
concepts. Additionally, we introduce some new concepts of Reuseware relevant for this
paper.

2.1 Composition Interfaces

Figure 1a shows an Ecore-metamodel of ISC concepts relevant for this paper. The fun-
damental concept in ISC is the notion of fragment components—referred to as frag-
ments from now on. A fragment is a (possibly partial) sentence of a language. It declares
variation points that, together, form the fragment’s composition interface.

In ISC, the concept of variation points as building blocks for composition interfaces
is defined in a language-independent manner. In addition, here we introduce three dif-
ferent types of variation points—slots, hooks, and anchors. A slot marks elements as
replaceable. The elements can (and often have to) be replaced during composition. A
hook marks positions where additional fragments can be inserted. An element associ-
ated with an anchor can be accessed to act as an extension to a hook or a replacement
for a slot.

CompositionInterface GraphicalFragmentCompositionLanguage

FragmentVariationPoint

Slot Hook

0..*

Anchor

compositionInterface
Composer

BindExtend

Composition
Program0..*

composersanchor

1

0..*

1 0..* hook slot1 1

Ecore

EClass eClass()
EObject

1..*
vpElements

a b

Fig. 1. Metamodels of: a) the Composition Interface b) the Fragment Composition Language

2.2 Reuse Languages

The language used for expressing a fragment must allow demarcation of the different
variation points existing in the fragment. That is, such a language must provide special
constructs for expressing variation points. These constructs then provide concrete syn-
tax for the concepts from Fig. 1a. A technique for automatically constructing such a
language as an extension of an existing one is presented in [2]. The original language is
called the core language and the extended language is called the reuse language.

2.3 Composition Language

In order to define a composition of fragments, we need a language to express such com-
positions. Fragment composition is performed by so-called composers. In Reuseware,
two primitive composers1 are defined: 1) Bind connects slots with anchored elements,
and 2) Extend connects hooks with anchored elements. Typically, Bind and Extend will
copy the anchored element before putting it in the place of the slot or hook. However,
in certain cases this is inappropriate. Instead, the anchored element should only be ref-
erenced from the place where the slot or hook have been. Consequently, each primitive
composer exists in two forms: one copying elements and one referencing them. Note
that these primitive composers work independently of the language utilised for fragment
definition by using only the concepts defined in Fig. 1a. As long as there are means to
derive the composition interfaces from the fragments, the composers can address and
compose them.

Figure 1b depicts the metamodel of the fragment composition language. It refers to
the concepts from Fig. 1a for expressing the composition interface of fragment compo-
nents, i.e. Slot, Hook, Anchor, and contains concepts for the graphical composition
language we provide. This language covers the available composers Bind and Ex-
tend; we have implemented the language in a generic graphical composition editor.
The composition language allows to connect variation points (on the composition inter-
face of a fragment) with composers. The resulting description of the composition (the
composition program) is then executed by the composition engine of Reuseware.

3 Fragment-Based Aspect Orientation

In this section, we extend the concepts of ISC discussed so far with notions for aspect-
orientation. Because ISC is language independent, and because we introduce these new
notions in a language-independent manner, we obtain a means of expressing aspect-
oriented models and programs for arbitrary languages. To support this claim, we will
apply the concepts for models in UML as well as for programs in Java. First, however,
we introduce the basic concepts.

3.1 Fragment Queries and Aspect-Oriented Invasive Software Composition

In [4] Filman and Friedmann state that aspect orientation (AO) [5] must provide sup-
port for quantification and obliviousness. Quantification means that aspect code can be

1 In contrast to complex composers not examined in detail here.

CompositionInterface

Fragment matches(vp: VariationPoint): Boolean

VariationPoint

Slot

Hook

0..*

Anchor

compositionInterface

GroupedVariationPoint

PhysicalFragment
useMaximalInterface: Boolean

FragmentQuery

elements
1..*

elementFragments
1..*

Fig. 2. Extension of the metamodel to include fragment queries

distributed in a cross-cutting fashion into many places in the code of a software sys-
tem. Obliviousness means that the locations where aspect code is to be inserted need
not be specially prepared for this. More recent research shows, that these properties are
existent in many AO approaches but far from being the core characteristics of aspect
orientation (cf. [6–8]). Furthermore, [4] distinguish black-box and clear-box aspect ori-
entation, where ‘black-box’ refers to approaches that “[..] quantify over the public in-
terface of components [..]”. In ISC, code can only be inserted into places where hooks
or slots have been defined and are, thus, part of a fragment’s composition interface.
Such variation points must be explicitly defined, requiring the code of the fragment to
explicitly mention the possibility of modification. This means that ISC can be used to
implement black-box, but not clear-box aspect orientation.

Quantification can be achieved by grouping a set of fragments and treating the com-
plete group like a single fragment. We call such a grouping of fragments a fragment
query for reasons that will become clearer later on. Figure 2 shows how we have ex-
tended the metamodel from Fig. 1a to include fragment queries. A fragment query is,
thus, a fragment collecting other fragments—possibly fragment queries themselves. Ba-
sic fragments are represented as instances of the PhysicalFragment class.

The composition interface of a fragment query reflects the interfaces of its element
fragments. However, variation points of the same name and type that occur in different
element fragments are merged into one variation point for the fragment query. In addi-
tion, variation points of equal type—but different name—can be merged using regular
expressions over the names. This allows for user controlled merging of variation points
which is effectively a point-cut definition. Merged variation points are represented as
GroupedVariationPoints in the extended metamodel from Fig. 2.

To define how the composition interface of a fragment query is derived from the
composition interfaces of its element fragments, we need to introduce a few helper
concepts. To do so, in the following, we use the Object Constraint Language (OCL) [9]
to formally express additional concepts for our metamodel classes. Notice, that for lack
of space, the formalisations do not consider the case where variation points of different
names are merged using regular expressions. This has, however, been implemented in
our prototype.

First, we need to define which variation points should be merged. To this end, we
have introduced the operation matches() on variation points, that returns true if
two variation points are sufficiently equal to be merged into one. Listing 1.1 shows the
definition of matches() for variation points.

1 c o n t e x t V a r i a t i o n P o i n t : : matches (vp : V a r i a t i o n P o i n t) : Boolean
pos t : r e s u l t = (typeMatch (vp)) and

(name = vp . name) and
(vpElements . e C l a s s ()−>f o r A l l (c1 | vp . anchorNodes . e C l a s s ()−>f o r A l l

(c2 | c2 = c1)))

6 c o n t e x t V a r i a t i o n P o i n t : : typeMatch (vp : V a r i a t i o n P o i n t) : Boolean
pos t : r e s u l t = (s e l f . oclIsKindOf (Anchor) and vp . oclIsKindOf (Anchor)) or

(s e l f . oclIsKindOf (S l o t) and vp . oclIsKindOf (S l o t)) or
(s e l f . oclIsKindOf (Hook) and vp . oclIsKindOf (Hook)) or
(s e l f . oclIsKindOf (G r o u p e d V a r i a t i o n P o i n t) and e l e m e n t s−>f o r A l l (vpe

| vpe . typeMatch (vp))) or
11 (vp . oclIsKindOf (G r o u p e d V a r i a t i o n P o i n t) and vp . e l e m e n t s−>f o r A l l (vpe

| s e l f . typeMatch (vpe)))

Listing 1.1. Definition of matching between variation points. Two variation points
should be merged if they have the same name, are of the same type, and the type of
the elements they reference is the same.

c o n t e x t V a r i a t i o n P o i n t : : merge (vps : S e t (V a r i a t i o n P o i n t)) : V a r i a t i o n P o i n t
pre : vps−>f o r A l l (vp | s e l f . ma tches (vp))
pos t : (typeMatch (r e s u l t)) and

4 (r e s u l t . oclIsKindOf (G r o u p e d V a r i a t i o n P o i n t)) and
(r e s u l t . name = name) and
(r e s u l t . e l e m e n t s = s e l f . e l e m e n t s−>un ion (vps . e l e m e n t s)) and
(r e s u l t . vpElements = r e s u l t . e l e m e n t s−>vpElements)

Listing 1.2. Merge operation defined for variation points.

The merging of matching variation points is represented by another operation on
variation points: merge(). Listing 1.2 shows the specification of merge(). This op-
eration always creates a GroupedVariationPoint collecting all the merged vari-
ation points. Note that anchors can only be merged with anchors, slots with slots, and
hooks with hooks. The introduction of a GroupedVariationPoint allows com-
position interfaces of fragment queries to be viewed in two ways:

1. From the outside, the variation points in the composition interface of a fragment
query look just like any other variation point. In particular, the elements they refer
to can be accessed through the vpElements association end.

2. The composition system can further inspect grouped variation points and identify
for each element variation point the fragment it came from and the elements it refers
to.

There are at least two ways of defining a fragment query’s composition interface
from the composition interfaces of its element fragments. We can a) use the maximal in-
terface, which, intuitively, is the union of all composition interfaces of all element frag-
ments where matching variation points have been merged as defined by the merge()
operation, or b) use the minimal interface containing only those variation points that ex-
ist in all element fragments, also merging them according to the merge() operation.
The metamodel supports these types of interfaces by introducing an attribute use-
MaximalInterface for FragmentQuery. Listing 1.3 shows how they are used

c o n t e x t FragmentQuery
inv c o m p o s i t i o n I n t e r f a c e =

3 e l e m e n t F r a g m e n t s . c o m p o s i t i o n I n t e r f a c e
−> i t e r a t e (vp : V a r i a t i o n P o i n t ; c m p I n t f : S e t (V a r i a t i o n P o i n t) = S e t{} |

i f (c m p I n t f−>e x i s t s (vp1 | vp . matches (vp1))) then
−− merge v a r i a t i o n p o i n t s
c m p I n t f−>e x c l u d i n g (vp1 | vp . matches (vp1))

8 −>i n c l u d i n g (vp . merge (c m p I n t f−>s e l e c t (vp1 | vp . matches (vp1))))
e l s e

c m p I n t f−>i n c l u d i n g (vp)
e n d i f

)
13 −>r e j e c t (vp : V a r i a t i o n P o i n t |

(not u s e M a x i m a l I n t e r f a c e) and
e l e m e n t F r a g m e n t s−>e x i s t s (f | not f . c o m p o s i t i o n I n t e r f a c e−>e x i s t s (

vp1 | vp . matches (vp1)
)

18)
)

Listing 1.3. Composition interface of a fragment query.

to derive the composition interface of a fragment query. Lines 3–12 define the maximal
interface. Lines 13–19 optionally restrict the interface to the minimal interface. Which
of the different interface generation strategies is better may depend on the specific us-
age context. Determining the relative advantages and disadvantages remains for further
study.

Further, we need to define how fragment queries can be expressed. In general, we
can distinguish between extensional and intentional queries. An extensional query is
simply an enumeration of its element fragments. An intentional query is given by some
kind of expression over the fragments in a fragment repository. Intuitively, this is query-
ing the fragment store for a set of fragments, much like an SQL query requests a set of
records from a database. In our implementation, we support intentional queries using
regular expressions over fragment names.

The processing of merged variation points during composition requires an enhanced
composition algorithm. Since describing this algorithm in all its variations is space
consuming, we limit our study to a set of scenarios that are required for Aspect-Oriented
Modelling (AOM) in this paper. The restriction is that we only allow one query in
a composition program to represent a core and use ordinary fragments to represent
advices. Anchors in advices may only be bound to variation points in the core (and not
in other advices) and only by copying. However, anchors in the core may be bound to
variation points in advices by referencing or copying (to configure advices with core
information).

In most cases, executing the composition means replacing variation-point elements
with anchored elements. However, it may happen that a merged anchor in the core is
bound to a slot in an advice. Usually, anchors which are bound to slots are only al-
lowed to have one associated element—a limitation that can not be enforced in frag-
ment queries. Thus we define: when a merged anchor is bound to a slot, additional
copies of the advice containing the slot are produced—one for each elements associ-
ated with the anchor. These additional advice copies are bound to the core re-applying

Fig. 3. Core model: FileSystem

Fig. 4. Advice model: Observer

the corresponding composers. In the next section we show how a concrete example is
processed.

3.2 Aspect-Oriented Modelling with Fragment Queries

As a first example, we discuss how our approach applies to aspect-oriented modelling
using two UML class diagrams. The first—the core model—represents the core, into
which the second—the advice model—shall be woven. To define the pointcuts over
the core, we apply a fragment query. Anchors in the advice model are then bound to
slots and hooks in the core model. Additionally, the bound advice fragments have to be
configured with core information. Thus, certain anchors in the core model are bound
to slots in the advice model. The concrete example models were modelled using the
TOPCASED UML editor [10] and are shown in Fig. 3 (the core) and Fig. 4 (the advice).
The core model represents a conventional file system. The advice model depicts the
Observer design pattern [11].

The composition program describing the weaving, as it can be modelled in our edi-
tor, is shown in Fig. 6. Boxes represent fragments or queries, circles represent variation
points and arrows represent applications of composers. The FileSystem acts as ob-
server by extending the appropriate hooks with the properties and operations from the
Observer advice class. The classes FSFile and FSFolder both are assigned the
Subject role which is expressed by the pointcut FS.* in the composition program.
The fragment query thus merges their property (fs*PropertyHook) and operation
(fs*OperationHook) hooks. These merged hooks are extended with properties and
operations from the Subject class. FileSystemPackageHook is extended with
the associations between Observer and Subject. Anchors in the core are bound to
slots in the advice to configure them with core information. Here, the correct types for
references and operations are bound. The composition result is displayed in Fig. 5.

3.3 Aspect-Oriented Programming with Fragment Queries

To evaluate the language independence of our approach, we apply it to aspect-oriented
programming of Java programs. Thus, we need to perform a language extension (as in
[2]), enhancing Java with the following constructs:

– << vpElementName >> defines a slot element.
– <+ vpElementName +> defines a hook element.
– <$ vpElementName : anchoredElement $> defines an anchor element.

To allow comparison, we reuse the UML example and implement it in Java. List-
ing 1.4 shows the three core classes and Listing 1.5 the two advice classes.

Fig. 7 presents the model of the composition program. Note the similarity to the
composition programs in Fig. 6. The most important difference is that the advice is
defined in two fragments here.

p u b l i c c l a s s <$ f i l e S y s t e m A n c h o r : F i l e S y s t e m $> {
p r i v a t e FSFolde r r o o t F o l d e r ;
<+ fi leSystemMemberHook +>
p u b l i c vo id s e t R o o t F o l d e r (FSFo lde r f o l d e r) { . . . }

}

p u b l i c c l a s s <$ f s F i l e A n c h o r : F S F i l e $> { . . . }
p u b l i c c l a s s <$ f s F o l d e r A n c h o r : FSFo lde r $> { . . . }

Listing 1.4. Core classes FileSystem.rjava, FSFile.rjava, and FSFolder.rjava

p u b l i c c l a s s O b s e r v e r {
<$ o b s e r v e r O p e r a t i o n A n c h o r : p r i v a t e <<S u b j e c t S l o t >>[] s u b j e c t s ; $>
<$ o b s e r v e r O p e r a t i o n A n c h o r : p u b l i c vo id u p d a t e () { . . . } $>

}

p u b l i c c l a s s S u b j e c t {
<$ subjec tMemberAnchor : p r i v a t e <<O b s e r v e r S l o t >>[] o b s e r v e r s ; $>
<$ s u b j e c t O p e r a t i o n A n c h o r : p u b l i c vo id a t t a c h (<<O b s e r v e r S l o t>> o b s e r v e r) { . . . } $>
<$ s u b j e c t O p e r a t i o n A n c h o r : p u b l i c vo id d e t a c h(<<O b s e r v e r S l o t>> o b s e r v e r) { . . . } $>
<$ s u b j e c t O p e r a t i o n A n c h o r : p u b l i c vo id n o t i f y () { . . . } $>

}

Listing 1.5. Advice classes Observer.Class.java and Subject.Class.java

Fig. 5. Composition result

Fig. 6. Composition program for AOM with
UML extended with Reuse concepts

Fig. 7. Composition program for AOP in
Java extended with Reuse concepts

4 Related Work

In the literature, several approaches exist that provide aspect orientation for the .NET
platform and go on to claim that this makes their approaches language agnostic or in-
dependent. For example, Aspect.NET [12] uses static weaving based on binary assem-
blies to provide AspectJ-like AOP for .NET, Compose* [13] is an implementation of
Composition Filters for .NET. Our approach goes beyond these techniques for it is not
restricted to languages that can be compiled into .NET assemblies. Furthermore, our
approach is sufficiently generic to allow a variety of languages for describing aspects to
be defined.

Fractal Aspect Components (FAC) [14] is an extension of the Fractal Component
Model [15] to support Aspect-Oriented Programming. It aims at bridging the gap be-
tween Component-Based Software Engineering and Aspect-Oriented Programming.
FAC introduces several additional concepts to the Fractal Component Model to com-
pose Aspectisable Components and Aspect Components. FAC is similar to the Reuse
approach, because the component model is designed in a language-independent way.
This allows for conceptual reuse within different implementations. It is, however, also
different in many ways. For example, aspect binding and composition programs do not
abstract from the implementation of the component model in FAC. With the graphical
fragment composition editor, the Reuse approach provides a general-purpose way to
express compositions independently of the fragment component’s core language.

Model Weaving is also strongly related to the work presented in this paper. It allows
for combining two or more models to form a composed or woven model. AMW, the
Atlas Model Weaver [16] is a tool that allows generating model transformations based
on a so-called Weaving Model. The Weaving Model consists of links between two or
more models that are used to generate model transformations and model weavings.

Another approach to model weaving presented in [17] by Heidenreich and Loch-
mann stems from Product-Line Engineering and provides means to express Aspectual
Features in separate models which are woven into a core model according to the fea-
ture selection of the product line. The authors are using graph-rewrite systems to weave
the Aspectual Features to the core model. This idea was adopted in the design of the
XWeave [18] tool by Groher and Völter. XWeave is integrated in the openArchitec-

tureWare tool chain and uses name correspondence and regular expressions for model
weaving as the Reuse editor does.

However, compared to the existing model weaving approaches, the work presented
in this paper goes beyond model weaving. It unifies weaving and composition opera-
tions on both model and text artefacts through the general concepts of variation points
and fragment queries.

5 Conclusions and Outlook

We have presented a technology that can provide aspect-oriented concepts for an arbi-
trary language. The approach has been implemented based on the Reuseware framework
as a plug-in for the Eclipse platform. We have demonstrated the power of the approach
by applying it to two languages—UML as an example of a modelling language and
Java as an example of a programming language. The most important feature of our ap-
proach is the fragment query, which allows groups of fragments to be treated like one
fragment—enabling quantification.

A limitation of our current approach is the asymmetry of core and aspect compo-
sition. In the future, we plan to study how fragment queries can be used to express
cores and aspects alike and how several core and aspect fragments can be composed in
a symmetric fashion.

Acknowledgement

This research has been co-funded by the European Commission within the 6th Frame-
work Programme project MODELPLEX contract number 034081 (cf. http://www.
modelplex.org) and by the German Ministry of Education and Research (BMBF)
within the project feasiPLe (cf. http://www.feasiple.de).

References

1. Aßmann, U.: Invasive Software Composition. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2003)

2. Henriksson, J., Johannes, J., Zschaler, S., Aßmann, U.: Reuseware – adding modularity to
your language of choice. In: TOOLS EUROPE 2007: Special Issue of the Journal of Object
Technology (to appear). (2007)

3. Software Technology Group, Technische Universität Dresden: Reuseware Composition
Framework (2007) URL http://www.reuseware.org.

4. Filman, R., Friedman, D.: Aspect-oriented programming is quantification and obliviousness.
In: Workshop on Advanced Separation of Concerns, OOPSLA 2000. (2000)

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin,
J.: Aspect-oriented programming. In Akşit, M., Matsuoka, S., eds.: 11th Europ. Conf. on
Object-Oriented Programming (ECOOP’97). Volume 1241 of LNCS., Springer (1997)

6. Aldrich, J.: Open modules: Modular reasoning about advice. In: 19th Europ. Conf. on
Object-Oriented Programming (ECOOP’05). Volume 3586 of LNCS., Springer (2005) 144–
168

7. Sullivan, K., Griswold, W.G., Song, Y., Cai, Y., Shonle, M., Tewari, N., Rajan, H.: Informa-
tion hiding interfaces for aspect-oriented design. In: 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, New York, NY, USA, ACM Press (2005) 166–175

8. Rashid, A., Moreira, A.: Domain models are not aspect free. In Nierstrasz, O., Whittle,
J., Harel, D., Reggio, G., eds.: 9th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’06). Volume 4199 of LNCS., Springer (2006) 155–169

9. Object Management Group: UML 2.0 OCL specification. OMG Document (2003) URL
http://www.omg.org/cgi-bin/doc?ptc/03-10-14.

10. The Topcased Project Team: TOPCASED (2007) URL http://www.topcased.org.
11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, Reading, MA (1994)
12. Safonov, V., Gratchev, M., Grigoryev, D., Maslennikov, A.: Aspect.NET – aspect-oriented

toolkit for Microsoft.NET based on Phoenix and Whidbey. In: International Conference
.NET Technologies, Plzen, Czech Republic. (2006)

13. Garcı́a, C.F.N.: Compose* – a runtime for the .Net platform. Master’s thesis, Vrije Univer-
siteit Brussel, Belgium (2003) More information also at http://composestar.sf.net/.

14. Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L.: A model for developing component-
based and aspect-oriented systems. In Löwe, W., Südholt, M., eds.: 5th Int’l Symposium on
Software Composition (SC’06). Volume 4089 of LNCS., Springer (2006)

15. The Fractal Project Team: The Fractal Project (2007) URL http://fractal.objectweb.org/.
16. The AMW Project Team: Atlas Model Weaver (2007) URL http://eclipse.org/gmt/amw/.
17. Heidenreich, F., Lochmann, H.: Using graph-rewriting for model weaving in the con-

text of aspect-oriented product line engineering. In: 1st Workshop on Aspect-Oriented
Product Line Engineering (AOPLE’06) co-located with the Int’l Conf. on Genera-
tive Programming and Component Engineering (GPCE’06), Online Proc. (2006) URL
http://www.softeng.ox.ac.uk/aople/aople1/.

18. Groher, I., Völter, M.: XWeave: Models and Aspects in Concert. In: 10th Work-
shop on Aspect-Oriented Modeling (AOM@AOSD’07) co-located with the 6th Int’l
Conf. on Aspect-Oriented Software Development (AOSD’07), Online Proc. (2007) URL
http://www.aspect-modeling.org/aosd07/.

