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Abstract. Many applications of graph transformation require rules that
change a graph without introducing new consistency violations. When
designing such rules, it is natural to think about the desired outcome state,
i.e., the desired effect, rather than the specific steps required to achieve it;
these steps may vary depending on the specific rule-application context.
Existing graph-transformation approaches either require a separate rule
to be written for every possible application context or lack the ability
to constrain the maximal change that a rule will create. We introduce
effect-oriented graph transformation, shifting the semantics of a rule
from specifying actions to representing the desired effect. A single effect-
oriented rule can encode a large number of induced classic rules. Which
of the potential actions is executed depends on the application context;
ultimately, all ways lead to Rome. If a graph element to be deleted
(created) by a potential action is already absent (present), this action
need not be performed because the desired outcome is already present. We
formally define effect-oriented graph transformation, show how matches
can be computed without explicitly enumerating all induced classic rules,
and report on a prototypical implementation of effect-oriented graph
transformation in Henshin.

Keywords: Graph transformation · Double-pushout approach · Con-
sistency-preserving transformations

1 Introduction

Applications of graph transformation such as model synchronisation [14,13,20] or
search-based optimisation [5,19] require graph-transformation rules that combine
a change to the graph with repair [28] operations to ensure transformations are
consistency sustaining or even improving [21]. For any given graph constraint,
there are typically many different ways in which it can be violated, requiring
slightly different specific changes to repair the violation. As a result, it is often
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easier to think about the desired effect of a repairing graph transformation rule
rather than the specific transformations required. We would like to be able to
reach a certain state of the graph—defined in terms of the presence or absence of
particular graph elements (the effect)—even if, in different situations, a different
set of specific changes is required to achieve this.

Existing approaches to graph transformation make it difficult to precisely
capture the effect of a rule without explicitly specifying the specific set of
changes required. For example, the double-pushout approach (DPO) to graph
transformation [10,11] has gained acceptance as an underlying formal semantics
for graph and model transformation rules in practice as a simple and intuitive
approach: A transformation rule simply specifies which graph elements are to be
deleted and created when it is applied; that is, a rule prescribes exactly all the
actions to be performed. For graph repair, this effectively forces one to specify
every way in which a constraint can be violated and the specific changes to apply
in this case, so that the right rule can be applied depending on context. On
the other end of the spectrum, the double-pullback approach [18] is much more
flexible. Here, rules only specify minimal changes. However, there is no way of
operationally constraining the maximal possible change.

There currently exists no approach to graph transformation that allows
the effect of rules to be specified concisely and precisely without specifying
every action that needs to be taken. In this paper, we introduce the notion of
effect-oriented graph transformations. In this approach, graph-transformation
rules encode a, potentially large, number of induced rules. This is achieved by
differentiating basic actions that have to be performed by any transformation
consistent with the rule and potential actions that only have to be performed if
they are required to achieve the intended rule effect. Depending on the application
context, a different set of actions will be executed—all ways lead to Rome. We
provide an algorithm for selecting the right set of actions depending on context,
without having to explicitly enumerate all possibilities—we efficiently find the
right way to Rome.

Thus, the paper makes the following contributions:

1. We define the new notion of effect-oriented graph transformation rules and
discuss different notions of consistent matches for these;

2. We provide an algorithm for constructing a complete match and a transfor-
mation given a partial match for an effect-oriented transformation rule. The
algorithm is efficient in the sense that it avoids computing and matching all
induced rules explicitly;

3. We report on a prototypical implementation of effect-oriented transformations
in Henshin; and

4. We compare our approach to existing approaches to graph transformation
showing that it does indeed provide new expressivity.

The rest of this paper is structured as follows. First, we introduce a running
example (Sect. 2) and briefly recall basic preliminaries (Sect. 3). Section 4 intro-
duces effect-oriented rules and transformations and several notions of constructing
matches. Section 5 explains in more detail one algorithm for constructing matches
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Fig. 1. Example rules, shown in the integrated visual syntax of Henshin [1,29]. The
LHS of a rule consists of all red and grey elements (additionally annotated with delete
or preserve), the RHS of all green (additionally annotated as create) and grey elements.

for effect-oriented rules and reports on a prototype implementation in Henshin.
In Section 6, we discuss how existing applications can benefit from effect-oriented
rules and transformations, and compare our new approach to graph transfor-
mation with other approaches that could be used to achieve these goals. We
conclude in Sect. 7. We provide some additional results and explanations and
proofs of our formal statements in an extended version of this paper [22].

2 Running Example

We use the well-known banking example [23] and adapt it slightly to illustrate
our newly introduced concept of effect-oriented transformations. Assume that the
context of this example is specified in a meta-model formalised as a type graph
(not shown) for the banking domain in which a Bank has Clients, Accounts and
Portfolios. A Client may have Accounts which may be associated with a Portfolio.

Imagine a scenario where it is to be ensured that a Client has an Account with
a Portfolio. To realise this condition in a rule-based manner so that no unnecessary
elements are created, at least three rules (and a programme to coordinate their
application) are required: A rule that checks whether a Client already has an
Account with a Portfolio, a rule that adds a Portfolio to an existing Account of the
Client, and a rule that creates all the required structure; this last rule is shown
as the rule ensureThatClientHasAccAndPortfolio in Fig. 1.

An analogous problem exists if the Accounts and Portfolios of a Client are to be
removed. The rule ensureThatClientHasNoAccAndPortfolio in Fig. 1 is the rule that
deletes the entire structure, and additional rules are needed to delete Accounts
that are not associated with Portfolios. In general, the number of rules needed
and the complexity of their coordination depend on the size of the structure to
occur together and hence, to be created (deleted).

With our new notion of effect-oriented rules and transformations, we provide
the possibility to use a single rule to specify all desired behaviours by making
the rule’s semantics dependent on the context in which it is applied. Specifically,
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if the rule ensureThatClientHasAccAndPortfolio is applied to a Client in effect-
oriented semantics, this allows for matching an existing Account and/or Portfolio
(rather than creating them) and only creating the remainder. Therefore, we call
the creation actions for Account and Portfolio potential actions that are only
executed if the corresponding elements do not yet exist. Similarly, applying the
rule ensureThatClientHasNoAccAndPortfolio in effect-oriented semantics allows
deleting nothing (if the matched Client has no Account and no Portfolio) or only an
Account (that does not have a Portfolio). So here the deletion actions are potential
actions that are only executed if the corresponding elements are present. We will
allow for some of the actions of an effect-oriented rule to be mandatory. Note that
in a Henshin rule, we would need to provide additional annotation to differentiate
mandatory from potential actions. We will define different strategies for this kind
of matching that may be appropriate for different application scenarios.

3 Preliminaries

In this section, we briefly recall basic preliminaries. Throughout our paper, we
work with typed graphs and leave the treatment of attribution and type inheritance
to future work. For brevity, we omit the definitions of nested graph conditions
and their shift along morphisms [16,12]. We also omit basic notions from category
theory; in particular, we omit standard facts about adhesive categories [24,11]
(of which typed graphs are an example). While these are needed in our proofs,
the core ideas in this work can be understood without their knowledge.

Definition 1 (Graph. Graph morphism). A graph G = (VG, EG, srcG, tarG)
consists of a set of nodes (or vertices) VG, a set of edges EG, and source and
target functions srcG, tarG : EG → VG that assign a source and a target node to
each edge.

A graph morphism f = (fV , fE) from a graph G to a graph H is a pair of
functions fV : VG → VH and fE : EG → EH that both commute with the source
and target functions, i.e., such that srcH◦fE = fV ◦srcG and tarH◦fE = fV ◦tarG.
A graph morphism is injective/ surjective/bijective if both fV and fE are. We
denote injective morphisms via a hooked arrow, i.e., as f : G ↪→ H.

Typing helps equip graphs with meaning; a type graph provides the available
types for elements and morphisms assign the elements of typed graphs to those.

Definition 2 (Type graph. Typed graph). Given a fixed graph TG (the type
graph), a typed graph G = (G, typeG) (over TG) consists of a graph G and a
morphism typeG : G→ TG. A typed morphism f : G→ H between typed graphs
G and H (typed over the same type graph TG) is a graph morphism that satisfies
typeH ◦ f = typeG.

Throughout this paper, we assume all graphs to be typed over a given type graph
and all morphisms to be typed morphisms. However, for (notational) simplicity,
we let this typing be implicit and just speak of graphs and morphisms. Moreover,
all considered graphs are finite.
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Fig. 2. A rule-based transformation in the Double-Pushout approach

Definition 3 (Rules and transformations). A rule ρ = (p, ac) consists of a
plain rule p and an application condition ac. The plain rule is a span of injective
morphisms of typed graphs p = (L le←−↩ K

ri
↪−→ R); its graphs are called left-hand

side (LHS), interface, and right-hand side (RHS), respectively. The application
condition ac is a nested condition [16] over L.

Given a rule ρ = (L le←−↩ K
ri

↪−→ R, ac) and an injective morphism m : L ↪→ G,
a (direct) transformation G =⇒ρ,m H from G to H (in the Double-Pushout
approach) is given by the diagram in Fig. 2 where both squares are pushouts
and m satisfies the application condition ac, denoted as m |= ac. If such a
transformation exists, the morphism m is called a match and rule ρ is applicable
at match m; in this case, n is called the comatch of the transformation. An
injective morphism m : L ↪→ G with m |= ac from the LHS of a rule to some
graph G is called a pre-match.

For a rule to be applicable at a pre-match m, there must exist a pushout
complement for m ◦ le; in categories of graph-like structures, an elementary
characterisation can be given in terms of the dangling condition [11, Fact 3.11]:
A rule is applicable at a pre-match m if and only if m does not map a node to be
deleted in L to a node in G with an incident edge that is not also to be deleted.

Application conditions can be ‘shifted’ along morphisms in a way that pre-
serves their semantics [12, Lemma 3.11]. We presuppose this operation in our
definition of subrules without repeating it. Our notion of a subrule is a simplifi-
cation of the concept of kernel and multi-rules [15].

Definition 4 (Subrule). Given a rule ρ = (L le←−↩ K
ri

↪−→ R, ac), a subrule of ρ

is a rule ρ′ = (L′ le′
←−↩ K ′ ri′

↪−→ R′, ac′) together with a subrule embedding ι : ρ′ ↪→ ρ
where ι = (ιL, ιK , ιR) and ιX : X ′ ↪→ X is an injective morphism for X ∈
{L, K, R} such that both squares in Fig. 3 are pullbacks and ac ≡ Shift(ιL, ac′).

4 Effect-oriented Rules and Transformations

The intuition behind effect-oriented semantics is that a rule prescribes the state
that should prevail after its application, not the actions to be performed. In
this section, we develop this approach. We introduce effect-oriented rules as a
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le ri

Fig. 3. Subrule ρ′ of a rule ρ

compact way to represent a whole set of induced rules. All induced rules share a
common base rule as subrule (prescribing actions to be definitively performed) but
implement different choices of the potential actions allowed by the effect-oriented
rule. In a second step, we develop a semantics for effect-oriented rules; it depends
on the larger context of effect-oriented transformations which of the induced
rules is actually applied. Here, we implement the idea that potential deletions of
an effect-oriented rule are to be performed if a suitable element exists but can
otherwise be skipped. In contrast, a potential creation is only to be performed if
there is not yet a suitable element. This maximises the number of deletions to be
made while minimising the number of creations. We propose two ways in which
this ‘maximality’ and ‘minimality’ can be formally defined.

4.1 Effect-oriented Rules as Representations of Rule Sets

In an effect-oriented rule, a maximal rule extends a base rule by potential actions.
Here, and in all of the following, we assume that the left and right morphisms of
rules and morphisms between rules (such as subrule embeddings) are actually
inclusions. This does not lose generality (as the desired situation can always be
achieved via renaming of elements) but significantly eases the presentation.

Definition 5 (Effect-oriented rule). An effect-oriented rule ρe = (ρb, ρm, ι)
is a rule ρm = (Lm

lem←−−↩ Km
rim

↪−−→ Rm, acm), called maximal rule, together with a
subrule ρb = (Lb

leb←−−↩ Kb
rib

↪−−→ Rb, acb), called base rule, and a subrule embedding
ι : ρb ↪→ ρm such that Kb = Km (and ιK is an identity).

The potential deletions of the maximal rule ρm are the elements of (Lm \
Km) \ Lb = Lm \ Lb; analogously, its potential creations are the elements
of (Rm \ Km) \ Rb = Rm \ Rb. Here, and in the following, ‘\’ denotes the
componentwise difference on the sets of nodes and edges.

While requiring Kb = Km restricts the expressiveness of effect-oriented rules,
it suffices for our purposes and allows for simpler definitions of their matching.
If, during matching, potential actions would compete with potential interface
elements for elements to which they can be mapped, developing notions of
maximality of matches becomes more involved.

Example 1. We consider the rules from Fig. 1 as the maximal rules of effect-
oriented rules. In each case, there are different possibilities as to which subrule
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Fig. 4. Construction of an induced rule ρi (indicated via the red, dashed border) and
of its match

of the rule to choose as the base rule. Our convention that the interfaces of the
base and maximal rules of an effect-oriented rule coincide specifies that in each
case the base rule contains at least the interface that is to be preserved. This
minimal choice renders all deletions and creations potential.

Specifically, for the rule ensureThatClientHasAccAndPortfolio, one can assume
that all elements to be created belong only to the maximal rule and represent
potential creations. A possible alternative is to consider as the base rule the rule
that creates an Account (together with its incoming edges), making the creation
of a Portfolio and its incoming edges potential. Further combinations are possible.

An effect-oriented rule ρe represents a set of induced rules. The induced rules
are constructed by extending the base rule of ρe with potential deletions and
creations from the maximal rule. However, we require every induced rule to have
the same RHS as the maximal rule. Potential creations are omitted in an induced
rule by also incorporating them into the interface. This ensures that the state
that is represented by the RHS of the maximal rule holds after applying an
induced rule, even if not all potential creations are performed.

Definition 6 (Induced rules). Given an effect-oriented rule ρe = (ρb, ρm,

ι), every rule ρi = (Li
lei←−↩ Ki

rii
↪−→ Ri, aci) is one of its induced rules if it is

constructed in the following way (see (the upper part of) Fig. 4):

1. There is a factorisation (1) ιL = ιm′
L ◦ ιi′

L of ιL : Lb ↪→ Lm into two inclusions
ιm′
L and ιi′

L.
2. There is a factorisation (2) ιR ◦ rib = rim = ri i ◦ ιm

K of rim : Km ↪→ Rm into
two inclusions ri i and ιm

K such that the square (2) is a pullback.
3. (Li, u, lei) are computed as pushout of the pair of morphisms (k1, ιm

K), where
k1 := ιi′

L ◦ leb; in that, we choose Li such that u and lei become inclusions
(employing renaming if necessary).

4. The application condition aci is computed as Shift(ιi
L, acb), where ιi

L := u◦ ιi′
L.

The size of an induced rule ρi is defined as |ρi| := |L′
i \ Lb|+ |Ki \Kb|.
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Rule ensureThatClientHasAccAndPortfolio_V2(in c)
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Rule ensureThatClientHasAccAndPortfolio_V1(in c)

«preserve»

:Bank

«preserve»
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:Portfolio
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Rule ensureThatClientHasAccAndPortfolio_V3(in c)

«preserve»

:Bank

«preserve»

c:Client
«create»
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«preserve»

:Portfolio
portfolios
«preserve»

portfolio
«create»

accounts
«create»clients

«preserve»

accounts
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clients

accounts
«create»
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«create» portfolio

«create»
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Rule ensureThatClientHasAccAndPortfolio_V4(in c)

«preserve»

:Bank
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c:Client
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:Portfolio
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«create»

portfolio
«create»
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«create»clients
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accounts

accounts
portfolio

portfolios

Fig. 5. Four induced rules arising from rule ensureThatClientHasAccAndPortfolio

Example 2. Consider again rule ensureThatClientHasAccAndPortfolio as a maximal
rule and its preserved elements as the base rule. This effect-oriented rule has 26
induced rules, namely all rules that stereotype some of the «create»-elements of
ensureThatClientHasAccAndPortfolio as «preserve». Figure 5 shows a selection of
those, namely induced rules that reduce undesired reuse of elements. These are
the rules where, together with a node that is to be preserved (instead of being
created), all adjacent edges that lead to preserved elements are also preserved. We
call this the weak connectivity condition and discuss and formalise it in [22]. An
example for an induced rule that is not depicted is the rule that creates a new
portfolio-edge between existing Accounts and Portfolios.

Next, consider the effect-oriented rule where the maximal rule ensureThat-
ClientHasAccAndPortfolio is combined with the base rule that already creates an
Account with its two incoming edges. Here, the Account cannot become a context
in any induced rule because its creation is already required by the base rule.
(This is ensured by the factorisation (2) in Fig. 4 being a pullback.) The induced
rules of ensureThatClientHasNoAccAndPortfolio are obtained in a similar way.

Our first result states that an induced rule actually contains the base rule of
its effect-oriented rule as a subrule. In particular, this ensures that, if an induced
rule is applied, all actions specified by the base rule are performed.
Proposition 1 (Base rule as subrule of induced rule). If ρi is an induced
rule of the effect-oriented rule ρe = (ρb, ρm, ι), then ρb is a subrule of ρi via
the embedding (ιi

L, ιi
K , ιi

R), where ιi
L := u ◦ ιi′

L, ιi
K := ιm

K and ιi
R := ιR (compare

Fig. 4).
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Next, we show that an effect-oriented rule indeed compactly represents a
potentially large set of rules. The exact number of induced rules depends on how
the edges of the maximal rule are connected.
Proposition 2 (Number of induced rules). For an effect-oriented rule ρe =
(ρb, ρm, ι), the number n of its induced subrules (up to isomorphism) satisfies:

2|VLm \VLb |+|VRm \VRb | ≤ n ≤ 2|VLm \VLb |+|ELm \ELb |+|VRm \VRb |+|ERm \ERb | .

While our definition of induced rules is intentionally liberal, in many appli-
cation cases it may be sensible to limit the kind of considered induced rules to
avoid undesired reuse (e.g., connecting an Account to an already existing Portfolio
of another Client). In [22], we provide a definition that enables that.

4.2 Matching Effect-oriented Rules

In this section, we develop different ways to match effect-oriented rules. Effect-
oriented transformations get their semantics from ‘classical’ Double-Pushout
transformations using the induced rules of the applied effect-oriented rule. We
will develop different ways in which an existing context determines which induced
rule of an effect-oriented rule should be applied at which match.

We assume a pre-match for the base rule of an effect-oriented rule to be
given and try to to extend this pre-match to a match for an appropriate induced
rule. The notion of compatibility captures this extension relationship. In [22], we
present two technical lemmas that further characterise compatible matches.
Definition 7 (Compatibility). Given an effect-oriented rule ρe = (ρb, ρm, ι), a
pre-match mb : Lb ↪→ G for its base rule and a match mi : Li ↪→ G for one of its
induced rules ρi are compatible if mi◦ιi

L = mb, where ιi
L = u◦ιi′

L : Lb ↪→ Li stems
from the subrule embedding of ρb into ρi (compare Fig. 4 and Proposition 1).

An induced rule ρi can be matched compatibly to mb if it has a match mi
such that mb and mi are compatible.

Given an effect-oriented rule and a pre-match for its base rule, there can be
many different induced rules for which there is a compatible match. The following
definition introduces different strategies for selecting such a rule and match, so
that the corresponding applications form transformations that are complete in
terms of deletion and creation actions to achieve the intended effect, which is why
they are called effect-oriented transformations. Their common core is that in any
effect-oriented transformation, a pre-match of a base rule is extended by potential
creations and deletions from the maximal rule such that no further extension is
possible. Intuitively, this ensures that all possible potential deletions but only
necessary potential creations are performed (in a sense we make formally precise
in Theorem 1). A stricter notion is to maximise the number of reused elements.

Definition 8 (Local completeness. Maximality. Effect-oriented trans-
formation). Given a pre-match mb : Lb → G for the base rule ρb of an effect-
oriented rule ρe = (ρb, ρm, ι), and a match mi for one of its induced rules ρi that
is compatible with mb, ρi and mi are locally complete w.r.t. mb if (see Fig. 4):
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1. Local completeness of additional deletions: Any further factorisation ιL =
ιm′′
L ◦ ιi′′

L into inclusions (with domain resp. co-domain L′′
i ) such that there

exists a non-bijective inclusion j : L′
i ↪→ L′′

i with j ◦ ιi′
L = ιi′′

L and ιm′′
L ◦ j = ιm′

L

meets one of the following two criteria.
– Not matchable: There is no injective morphism e′

1 : L′′
i ↪→ G with e′

1◦ιi′′
L =

mb.
– Not applicable: Such an e′

1 exists, but the morphism m′
i : L′′

i → G which
it induces together with the right extension match e2 of mi (where L′′

i is
the LHS of the induced rule that corresponds to this further factorisation)
is not injective.

2. Local completeness of additional creations: Any further factorisation rim =
ri ′

i ◦ ιm′
K into inclusions (with domain resp. co-domain K ′

i ) such that there
is a non-bijective inclusion j : Ki ↪→ K ′

i with j ◦ ιm
K = ιm′

K and ri ′
i ◦ j = ri i

meets one of the following two criteria.
– Not matchable: There is no injective morphism e′

2 : K ′
i ↪→ G with e′

2 ◦
ιm′
K = mb ◦ leb.

– Not applicable: Such an e′
2 exists, but the morphism m′

i : L′′
i → G which

it induces together with the left extension match e1 of mi (where L′′
i is

the LHS of the induced rule that corresponds to this further factorisation)
is not injective.

An effect-oriented transformation t : G =⇒ H via ρe is a double-pushout
transformation t : G =⇒ρi,mi H, where ρi is an induced rule of ρe and ρi is locally
complete w.r.t. mb := mi ◦ ιi

L, the induced pre-match for ρb. The semantics of an
effect-oriented rule is the collection of all of its effect-oriented transformations.

A transformation t : G =⇒ρi,mi H via an induced rule ρi of a given effect-
oriented rule ρe is globally maximal (w.r.t. G) if for any other transformation
t′ : G =⇒ρ′

i,m
′
i

H ′ via an induced rule ρ′
i of ρe, it holds that |ρi| ≥ |ρ′

i|. Such a
transformation t is locally maximal if for any other transformation t′ : G =⇒ρ′

i,m
′
i

H ′ via an induced rule ρ′
i of ρe where the induced pre-matches mb and m′

b for
the base rule coincide, it holds that |ρi| ≥ |ρ′

i|. In all of these situations, we also
call the match mi and the rule ρi locally complete or locally/globally maximal.

Example 3. To illustrate the different kinds of matching for effect-oriented rules,
we again consider ensureThatClientHasAccAndPortfolio as a maximal rule whose
«preserve»-elements form the base rule and apply it according to different semantics
to the example instance depicted in Fig. 6. First, we consider the base match
that maps the Client-node of the rule to Client c1 in the instance. Extending
this base match in a locally complete fashion requires one to reuse the existing
Portfolio and one of the existing Accounts. Choosing Account a2 leads to induced
rule ensureThatClientHasAccAndPortfolio_V1 (Fig. 5) because there already exists
an edge to Portfolio p. In contrast, choosing Account a1 leads to a transformation
that creates a portfolio-edge from a1 to p (where the underlying induced rule is
not depicted in Fig. 5). Both transformations are locally complete; in particular,
locally complete matching is not deterministic. If, for semantic reasons, one wants
to avoid transformations like the second one and only allows the induced rules
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b:Bank

c1:Clienta1:Account a2:Account p:Portfolio

c2:Client

clientsaccounts accounts portfolios

clients

accounts accounts portfolio

Fig. 6. Tiny example instance for the banking domain

that are depicted in Fig. 5, applying ensureThatClientHasAccAndPortfolio_V2 at
Account a1 becomes locally complete.

The unique match for ensureThatClientHasAccAndPortfolio_V1 is the only
locally maximal match compatible with the chosen base match in our example
and is also globally maximal. To see a locally maximal match that is not globally
maximal, we consider the base match that maps to Client c2 instead of c1. Here,
the locally maximal match reuses a2, p and the portfolio-edge between them and
creates the missing edges from c2 to a2 and p. Choosing Account a1 instead of
a2 does not provide a locally maximal match as one cannot reuse a portfolio-edge
then (reducing the size of the induced rule by 1). The globally maximal match
remains unchanged as, by definition, it does not depend on a given base match.
It is that evident that in a larger example, every Client with an Account with
Portfolio constitutes a globally maximal match. Thus, also globally maximal
matching is non-deterministic. In fact, one can even construct examples where
globally maximal matches for different induced rules (of equal size) exist.

Unlike potential creations, potential deletions may require backtracking to
find a match. To see this, consider the rule ensureThatClientHasNoAccAndPortfolio
as a maximal rule whose «preserve»-elements form the base rule. Assuming that
an Account can be connected to multiple Clients, a locally complete pre-match
for an induced rule is not automatically a match for it. One has to look for an
Account that is only connected to the matched Client.

The above example shows that none of the defined notions of transformation
is deterministic. The situation is similar to Double-Pushout transformations in
general, where the selection of the match is usually non-deterministic; however, in
our case, there are different possible outcomes for the same base match. For the
applications we are aiming at, such as rule-based search, graph repair or model
synchronisation (see Sect. 6.1), this is not a problem. In these, it is often sufficient
to know that, for instance, the selected Client has an Account and Portfolio
after applying the rule ensureThatClientHasAccAndPortfolio but not necessarily
important which ones.

It is easy to see that every globally maximal transformation via an induced
rule is also locally maximal, and that every locally maximal transformation is
locally complete. The definition of an effect-oriented transformation thus captures
the weakest case and also covers locally and globally maximal transformations.

Proposition 3 (Relations between different kinds of effect-oriented
transformations). Given an effect-oriented rule ρe = (ρb, ρm, ι) and a graph G,
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every transformation t : G =⇒ρi,mi H via an induced rule ρi of ρe that is globally
maximal is also locally maximal. Every locally maximal transformation is also
locally complete for its induced pre-match mb for the base rule ρb.

Intuitively, the maximal rule of an effect-oriented rule specifies a selection of
potential actions. The induced rules result from the different possible combinations
of potential actions. The next theorem clarifies which effects can ultimately
occur after an effect-oriented transformation: If an element remains for which
a matching potential deletion was specified by the effect-oriented rule, one of
two alternatives took place: Either, the potential deletion was performed but
on a different element (alternative action)—if there is more than one way to
match an element potentially to be deleted. Or, that element was matched to
by a potential creation (alternative creation). The latter can happen when a
rule specifies potential creations and deletions for elements of the same type
(at comparable positions). Similarly, if x denotes a performed potential creation
but there had been an element y to which x could have been matched, y was
used by another potential creation or deletion (alternative action). In particular,
Theorem 1 also shows that effect-oriented rules can specify alternative actions.
Their application can be non-deterministic, where one of several possible actions
is chosen at random.
Theorem 1 (Characterising effect-oriented transformations). Let ρe =
(ρb, ρm, ι) be an effect-oriented rule and t : G =⇒ρi,mi H an effect-oriented trans-
formation via one of its induced rules ρi (compare Fig. 4 for the following).

Let x ∈ Lm \ Lb be an element that represents a potential deletion of ρe and
let K+

b be the extension of Kb with x (if defined as graph) and ι+ : Kb ↪→ K+
b

the corresponding inclusion. If there exists an injective morphism m+ : K+
b ↪→ H

with m+ ◦ ι+ = ni ◦ ιR ◦ rib, where ni is the comatch of t, then either
1. (Alternative action): the element x belongs to Li; in particular, an element of

the same type as x (and in comparable position) was deleted from G by t; or
2. (Alternative creation): the element m+(x) of H has a pre-image from Ri

under ni, i.e., it was first created by t or matched by a potential creation.
Similarly, let x ∈ Ri \ (Ki ∪Rb) represent one of the potential creations of ρe

that have been performed by t. Let K+
b be the extension of Kb with x (if defined

as graph) and ι+ : Kb ↪→ K+
b the corresponding inclusion. Then either

1. (Alternative action): for every injective morphism m+
b : K+

b ↪→ G with m+
b ◦

ι+ = mi ◦ lei ◦ ιm
K , the element m+

b (x) ∈ G has a pre-image from Li under
mi (i.e., it is already mapped to by another potential action); or

2. (Non-existence of match): no injective morphism m+
b : K+

b ↪→ G with m+
b ◦

ι+ = mi ◦ lei ◦ ιm
K exists.

5 Locally Complete Matches—Algorithm and
Implementation

In this section, we present an algorithm for the computation of a locally complete
match (and a corresponding induced rule) from an effect-oriented rule and a
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pre-match for its base rule. Starting with such a pre-match is well-suited for
practical applications such as model repair and rule-based search, where a match
of the base rule is often already fixed and needs to be complemented by (some
of) the actions of the maximal rule. Note that this pre-match is common to all
matches of all induced rules. Searching for the pre-match once and extending it
contextually is generally much more efficient than searching for the matches of
the induced rules from scratch. Moreover, we simultaneously compute a locally
complete match and its corresponding induced rule and thus avoid first computing
all induced rules (of which there can be many, cf. Proposition 2) and trying to
match them in order of their size. The correctness of our algorithm is shown in
Theorem 2 below. Note that we have focussed on the correctness of the algorithm
and, apart from the basic efficiency consideration above, further optimisations for
efficiency (incorporating ideas from [3]) are reserved for future work. We provide
a short comment on our use of backtracking in [22]. In Sec. 5.2 we report on a
prototype implementation of effect-oriented transformations in Henshin using
this algorithm.

5.1 An Algorithm for Computing Locally Complete Matches

We consider the problem of finding a locally complete match from a given pre-
match. So-called rooted rules, i.e., rules where a partial match is fixed (or at
least can be determined in constant time), have been an important part of the
development of rule-based algorithms for graphs that run in linear time [3,6].
Note that we are not looking for an induced rule and match that lead to a
maximal transformation but only to a non-extensible, i.e., locally complete one.
This has the effect that the dangling-edge condition remains the only possible
source of backtracking in the matching process.

In Algorithm 1, we outline a function that extends a pre-match for a base
rule of an effect-oriented rule to a compatible, locally complete match for a
corresponding induced rule. The input to our algorithm is an effect-oriented rule
ρe = (ρb, ρm, ι) (the parameter rule), a graph G (the parameter graph) and a
pre-match mb : Lb ↪→ G for ρb (the parameter currentMappings). It returns a
match mi for an induced rule ρi of ρe such that mi and mb are compatible and
mi is locally complete; it returns null if and only if no such compatible, locally
complete match exists. We outline the matching of nodes and consequently
consider currentMappings to be a list of node mappings; from this, one can infer
the matching of edges. The computed match also represents the corresponding
induced rule. We provide the details for these conventions in [22].

The search for a match starts with initialising unboundNodes with the potential
actions of the given effect-oriented rule (line 5). Then the function findExtension
recursively tries to match those, extending the pre-match (line 6). Function find-
Extension works as follows. For the unbound node n at the currently considered
position, all available candidates, i.e., all nodes x in the graph G to which n can
be mapped, are collected with the function findExtensionCandidates (line 10). A
candidate x must satisfy the following properties: (i) no other node may already
map to x, i.e., x does not yet occur in currentMappings (injectivity condition)
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and (ii) the types of n and x must coincide (consistency condition). If candidates
exist, for each candidate x, the algorithm tries to map n to x until a solution
is found. To do this, the set of current mappings is extended by the pair (n, x)
(line 13). If n was the last node to be matched (line 14) and the morphism defined
by currentMappings satisfies the dangling-edge condition (line 15), the result
is returned as solution (line 16). If the dangling-edge condition is violated, the
selected candidate is removed and the next one is tried (line 17). If n was not the
last node to be mapped (line 18), the function findExtension is called for the ex-
tended list of current mappings and the next unmatched node from unboundNodes
(line 19). If this leads to a valid solution, this solution is returned (lines 20–21).
Otherwise, the pair (n, x) is removed from currentMappings (line 23), and the
next candidate is tried. If candidates exist but none of them lead to a valid
solution, null is returned (line 33). If no candidate exists (line 25), either the
current mapping or null is returned as the solution (if n was the last node to
assign; lines 26–29) or findExtension is called for the next position (line 31), i.e.,
the currently considered node n is omitted from the mapping (and, hence, from
the induced rule).

Algorithm 1. Computation of a locally complete match

1 input: effect−oriented rule (ρb, ρm, ι), graph G, and a pre−match mb
2 output: locally complete match mi compatible with mb
3
4 function findLocallyCompleteMatch(rule, graph, currentMappings)
5 unboundNodes = VLm \ VLb ⊔ VRm \ VRb ;
6 return findExtension(currentMappings, graph, unboundNodes, 0);
7
8 function findExtension(currentMappings, graph, unboundNodes, position)
9 n = unboundNodes.get(position);

10 candidates = findExtensionCandidates(currentMappings, graph, n);
11 if (! candidates.isEmpty())
12 for each x in candidates
13 currentMappings.put(n,x);
14 if (position == unboundNodes.size() − 1) //last node to be matched
15 if (danglingEdgeCheck(graph, currentMappings))
16 return currentMappings;
17 else currentMappings.remove(n,x);
18 else //map next unbound node
19 nextSolution = findExtension(currentMappings, graph, unboundNodes,

position + 1);
20 if (nextSolution != null)
21 return nextSolution;
22 else //try next candidate
23 currentMappings.remove(n,x);
24 end for //no suitable candidate found
25 else //there is no candidate for the current node
26 if (position == unboundNodes.size() − 1) //last node to be matched
27 if (danglingEdgeCheck(graph, currentMappings))
28 return currentMappings;
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29 else return null;
30 else //map next unbound node
31 return findExtension(currentMappings, graph, unboundNodes, position+1);
32 //no candidate led to a valid mapping
33 return null;

Theorem 2 (Correctness of Algorithm 1). Given an effect-oriented rule ρe =
(ρb, ρm, ι), a graph G, and a pre-match mb : Lb ↪→ G, Algorithm 1 terminates and
computes an induced rule ρi with a match mi such that mi and mb are compatible
and ρi is locally complete w.r.t. mb. In particular, Algorithm 1 returns null if and
only if no induced rule of ρe can be matched compatibly with mb and returns ρb
as induced rule with match mb if and only if mb is locally complete and a match.

5.2 Implementation

In this section, we present a prototypical implementation of effect-oriented
transformations in Henshin [1,29], a model transformation language based on
graph transformation. From the user perspective, the implementation includes
two major classes for applying a given effect-oriented rule ρe = (ρb, ρm, ι) to
a host graph G: the class LocallyCompleteMatchFinder for finding a locally
complete match, and the class EffectOrientedRuleApplication to apply a rule
ρe = (ρb, ρm, ι) at such a match. We assume that ρe = (ρb, ρm, ι) is provided
as simple Henshin rule representing the maximal rule ρm, where the base rule
ρb is implicitly represented by the preserved part of the rule. The host graph
G is provided, as usual in Henshin, in the form of a model instance for a given
meta-model (representing the type graph).

The implementation follows the algorithm presented in Section 5.1. Our
main design goal was to reuse the existing interpreter core of Henshin, with
its functionalities for matching and rule applications, as much as possible. In
particular, in LocallyCompleteMatchFinder, we derive the base rule ρb by
creating a copy of ρm with creations and deletions removed, and feeding it into
the interpreter core to obtain a pre-match mb on G. For cases where a pre-match
mb can be found, we provide an implementation of Algorithm 1 that produces a
partial match m̂m incorporating the mappings of mb and additional mappings for
elements to be deleted and elements not to be created. In order to treat elements
of different actions consistently, we perform these steps on an intermediate rule
ρgr, called the grayed rule, in which creations are converted to preserve actions.
In EffectOrientedRuleApplication, we first derive the induced rule ρi from
m̂m, such that m̂m is a complete match for ρi. For the actual rule application,
we feed ρi together with m̂m into the Henshin interpreter core using a classical
rule application.

We have tested the implementation using our running example. For this
purpose, we specified all rules and an example graph. Our implementation behaved
completely as expected. The source code of the implementation and the example
are available online at https://github.com/dstrueber/effect-oriented-gt.
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6 Related Work

In this section, we describe how existing practical applications could benefit from
the use of effect-oriented transformations (Sect. 6.1) and relate effect-oriented
graph transformations to other graph transformation approaches (Sect. 6.2).

6.1 Benefiting from Effect-oriented Graph Transformation

There are several application cases in the literature where graph transformation
has been used to achieve certain states. In the following, we recall graph repair,
where a consistent graph is to be achieved, and model synchronisation, where
consistent model relations are to be achieved after one of the models has been
changed. A slightly different case is service matching, where a specified service
should be best covered by descriptions of existing services.

In their rule-based approach to graph repair [28], Sandmann and Habel repair
(sub-)conditions of the form ∃(a : B ↪→ C) using the (potentially large) set of
rules that, for every graph B′ between B and C, contains the rule that creates C
from B′. Negative application conditions (NACs) ensure that the rule with the
largest possible B′ as LHS is selected during repair. With effect-oriented graph
transformation, the entire set of rules derived by them can be represented by a
single effect-oriented rule that has the identity on B as base rule and B ↪→ C
as maximal rule. Moreover, we do not need to use NACs, since locally complete
matching achieves the desired effect.

In the context of model synchronisation, a very similar situation occurs in [26].
There, Orejas et al. define consistency between pairs of models via patterns. For
synchronisation, a whole set of rules is derived from a single pattern to account
for the different ways in which consistency might be restored (i.e., to create the
missing elements). Again, NACs are used to control the application of the rules.
As above, we can represent the whole set of rules as a single effect-oriented rule.

Fritsche, Kosiol, et al. extend TGG-based model synchronisation processes
to achieve higher incrementality using special repair rules [14,13,20]. Elements
to be deleted according to these rules may be deleted for other reasons during
the synchronisation process, destroying the matches needed for the repair rules.
In [14], this problem is avoided by only considering edits where this cannot
happen. In [13], Fritsche approaches this problem pragmatically by omitting
such deletions on-the-fly—if an element is already missing that needs be deleted
to restore consistency, the consistency has already been restored locally and
the deletion can simply be skipped. More formally, Kosiol in [20] presents a set
of subrules of a repair rule, where the maximal one matchable can always be
chosen to perform the propagation. This whole set of rules can also be elegantly
represented by a single effect-oriented rule.

In [2], Arifulina addresses the heterogeneity of service specifications and
descriptions. She develops a method for matching service specifications by finding
a maximal partial match for a rule that specifies a service. Apart from the fact
that Arifulina allows the partial match to also omit context elements, the problem
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can also be formulated as finding a globally maximal match (in our sense) of the
service-specifying rule in the LHS of available service description rules.

6.2 Relations to Other Graph Transformation Approaches

There are several approaches to graph transformation that take the variability
of the transformation context into account. We recall each of them briefly and
discuss the commonalities and differences to effect-oriented graph transformation.

Other semantics for applying single transformation rules. Graph transfor-
mation approaches such as the single pushout approach [25], the sesqui-pushout
approach [9], AGREE [7], PBPO [8], and PBPO+ rewriting [27] are more ex-
pressive than DPO rewriting, as they allow some kind of copying or merging
of elements or (implicitly specified) side effects. Rules are defined as (extended)
spans in all these approaches. Therefore, they also specify sets of actions that must
be executed in order to apply a rule. AGREE, PBPO, and PBPO+ would enable
one to specify what we call potential deletions; however, in these approaches their
specification is far more involved. None of the mentioned approaches supports
specifying potential creations that can be omitted depending on the currently
considered application context.

In the Double-Pullback approach, ‘a rule specifies only what at least has to
happen on a system’s state, but it allows to observe additional effects which may
be caused by the environment’ [18, p. 85]. In effect-oriented graph transformation,
the base rule also specifies what has to happen as a minimum. But the additional
effects are not completely arbitrary, as the maximal rule restricts the additional
actions. Moreover, these additional actions are to be executed only if the desired
state that they specify does not yet exist. This suggests that double-pullback
transformations are a more general concept than effect-oriented transformations
with locally complete matching.

Effect-oriented transformations via multiple transformation rules. In
the following, we discuss how graph transformation concepts that apply several
rules in a controlled way can be used to emulate effect-oriented transformations.

Graph programs [17,6] usually provide control constructs for rule applications
such as sequential application, conditional and optional applications, and ap-
plication loops. To emulate effect-oriented graph transformations, the base rule
would be applied first and only once. For each induced rule, we would calculate
the remainder rule, which is the difference to the base rule, i.e., it specifies all
actions of the induced rule that are not specified in the base rule. To choose the
right remainder rule, we would need a set of additional rules that check which
actions still need to be executed in the given instance graph. Depending on these
checks, the appropriate remainder rule is selected and applied.

Amalgamated transformations [4,12] are useful when graph transformation
with universally quantified actions are required. They provide a formal basis for
interaction schemes where a kernel rule is applied exactly once and additional
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multi-rules, extending the kernel rule, are applied as often as possible at matches
extending the one of the kernel rule. To emulate the behaviour of an effect-
oriented transformation by an interaction scheme, the basic idea is to generate
the set of multi-rules as all possible induced rules. Application conditions could
be used to control that the ‘correct’ induced rule is applied.

A compact representation of a rule with several variants is given by variability-
based (VB) rules [30]. A VB rule represents a set of rules with a common core.
Elements that only occur in a subset of the rules are annotated with so-called
presence conditions. A VB rule could compactly represent the set of induced
rules of an effect-oriented rule, albeit in a more complicated way, by explicitly
defining a list of features and using them to annotate variable parts. An execution
semantics of VB rules has been defined for single graphs [30] and sets of variants
of graphs [?]. However, for VB rules, the concept of driving the instance selection
by the availability of a match with certain properties has not been developed.

7 Conclusion

Effect-oriented graph transformation supports the modelling of systems in a more
declarative way than the graph transformation approaches in the literature. The
specification of basic actions is accompanied by the specification of desired states
to be achieved. Dependent on the host graph, the application of a base rule is
extended to the application of an induced rule that performs exactly the actions
required to achieve the desired state. We have discussed that effect-oriented
transformations are well suited to specify graph repair and model synchronisation
strategies, since change actions can be accompanied by actions that restore
consistency within a graph or between multiple (model) graphs. We have outlined
how existing approaches to graph transformation can be used to emulate effect-
oriented transformation but lead to accidental complexity that effect-oriented
transformations can avoid.

In the future, we are especially interested in constructing effect-oriented rules
that induce consistency-sustaining and -improving transformations [21]. Exam-
ining the computational complexity of different approaches for their matching,
developing efficient algorithms for the computation of their matches, elaborat-
ing conflict and dependency analysis for effect-oriented rules, and combining
effect-orientation with multi-amalgamation are further topics of theoretical and
practical interest.
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