
Abstracting Complex Languages through
Transformation and Composition?

Jendrik Johannes1, Steffen Zschaler2, Miguel A. Fernández3, Antonio Castillo3,
Dimitrios S. Kolovos4, and Richard F. Paige4

1 Technische Universität Dresden, jendrik.johannes@tu-dresden.de
2 Computing Department, Lancaster University, szschaler@acm.org

3 Telefónica Research & Development, mafg@tid.es,acastillo@polar.es
4 Department of Computer Science, University of York,

dkolovos,paige@cs.york.ac.uk

Abstract. Domain-specific languages (DSLs) can simplify the develop-
ment of complex software systems by providing domain-specific abstrac-
tions. However, the complexity of some domains has led to a number of
DSLs that are themselves complex, limiting the original benefits of using
DSLs. We show how to develop DSLs as abstractions of other DSLs by
transfering translational approaches for textual DSLs into the domain
of modelling languages. We argue that existing model transformation
languages are at too low a level of abstraction for succinctly expressing
transformations between abstract and concrete DSLs. Patterns identi-
fied in such model transformations can be used to raise the level of ab-
straction. We show how we can allow part of the transformation to be
expressed using the concrete syntax of the concrete DSL.

1 Introduction

Domain-specific languages (DSLs) [1] are used to reduce the complexity aris-
ing when developing software systems using general-purpose languages (GPLs).
A DSL contains a relatively small number of constructs that are immediately
identifiable to domain experts and allow modellers to construct concise models
capturing the design of the system at an appropriate level of abstraction. While
DSLs typically start off with a small number of constructs, they tend to grow
over time: as they are used, new concepts, features and relationships are iden-
tified and are subsequently added to the DSL—making it more flexible within
a wider domain. This flexibility introduces accidental complexity as modellers
need to make decisions about using each feature. This can eventually compro-
mise the very aims for which the DSL was built: domain focus and conciseness.
However, the additional concepts and features have been added for specific pur-
poses and cannot be simply dismissed; the complexity of the DSL is intentional.
One example of such a complex DSL is the Common Information Model (CIM)

? This research has been co-funded by the European Commission within the FP6
projects MODELPLEX (contract no. 34081) and AMPLE (contract no. 33710)



[2] DSL for network configuration. While CIM is a DSL, its size in terms of the
number of concepts and features it contains has progressively become compara-
ble to that of a GPL such as the UML. Many of the internal details of devices
in a network configuration, however, are quite irrelevant when we try to model
and understand the configuration as a whole. Still, these details are very much
relevant when the configuration is to be implemented or manipulated.

This paper is about how we can efficiently develop layers of DSLs; that is,
new DSLs that provide abstractions of the concepts in existing DSLs. Such ab-
stractions also may help to obtain models with desirable properties, e.g., models
that can be more easily navigated for transformation purposes. The abstractions
can also support ensuring the correctness of the models by construction instead
of relying solely on post-construction verification, by allowing only particular
combinations of model elements to be used.

The main contribution of this paper is the presentation of a generic trans-
lational approach for abstract DSLs, based on the identification of patterns in
model transformations. The approach works for all situations where each concept
in the abstract DSL can be translated into a partial model in a concrete DSL.
Complete models in an abstract DSL are then translated into compositions of
partial models in the concrete DSL. The approach has been implemented pro-
totypically using existing model transformation and composition technologies.
Due to space restrictions, we cannot give more than a general overview. Readers
interested in a more detailed discussion are referred to [3].

An obvious solution to the problem of building layers of DSLs is to design
a more abstract DSL using a standard modelling framework (e.g. EMF) and
then to use a model-to-model (M2M) transformation language such as QVT,
ATL or ETL to transform models expressed in the abstract DSL, into models
that conform to the concrete DSL. The main advantage of this approach is that
it is based on robust and well-understood technologies. Nevertheless, having
written several such abstract DSLs and transformations we have also identified
several shortcomings. First, the produced transformations are very much alike
and demonstrate several recurring patterns which need to be implemented from
scratch every time. Moreover, as single elements in models expressed in the
abstract DSL typically correspond to fragments consisting of several elements in
the target models that conform to the concrete DSL, constructing such fragments
needs to be done programmatically in the context of the M2M transformation—
which we have found to be counter-intuitive and error-prone.

If creating an abstract DSL from a more concrete one was a one-off, building
new tool support for automating it would most likely be unreasonable. From
our experience in providing tool-support for DSLs for industrial partners in
the ModelPlex EU project, this appears to be a recurring pattern. To address
the aforementioned shortcomings in a systematic way, a mechanism is needed
which allows developers to abstract from the commonalities of these concrete-to-
abstract DSL mappings and specify the mapping logic in a high level declarative
formalism that provides first-class support for recurring patterns.



2 Language Mapping Patterns

We have identified the following recurring patterns in the relationship between
abstract DSL model elements and concrete DSL model elements:

1. Element Mapping. This pattern embodies the fundamental form of abstrac-
tion in our scenario: the representation of a recurrent configuration of con-
crete DSL model elements by a single model element in the abstract DSL.

2. Element Mapping with Variability. This pattern maps an abstract DSL model
element to a network of model elements of the concrete DSL. The model
elements in the network and their connections are selected based on the
value(s) of one or more attributes of the abstract DSL model element.

3. Attribute Mapping. This pattern maps the value of an attribute of an abstract
DSL model element to the value(s) of one or more attributes of concrete DSL
model element(s). This mapping pattern is essential because, unlike the two
patterns discussed above, it allows concrete data values to be passed from
the abstract DSL model into the concrete DSL model.

4. Link Mapping. This pattern maps a link between two abstract DSL model
elements to one or more links between concrete DSL model elements. This
pattern is essential to translate relationships between elements in an abstract
DSL model into relationships in a concrete DSL model.

To make transformations easier to understand and write, it would be useful
to make explicit the use of each mapping pattern. That is, rather than manu-
ally writing the complete transformation, one could, for example, annotate the
abstract DSL metamodel with appropriate mapping patterns and generate the
transformation from these annotations in an automated manner. Generating the
transformation has the added benefit that each pattern can be implemented
consistently wherever it is instantiated.

By modelling the concrete-DSML configurations as separate model fragments
and referencing these fragments from the pattern annotations, we can further
improve our specifications. This avoids cluttered specifications, allows the use of
concrete-DSML editors for defining large parts of the transformation, and can
remove scattering and tangling from the transformation specification [3].

3 Implementation

Here, we present a prototypical implementation of our approach, based on the
Reuseware Composition Framework [4] as well as the Epsilon Transformation
Language (ETL) [5] and the Epsilon Generation Language (EGL) [6]. Figure 1
gives an overview of the prototype and the process of using it. Most of the steps
presented are automatic, artefacts that need to be provided to the prototype
have been highlighted in grey in the figure. There are two phases to using the
prototype: The first phase (named ‘meta level’ in Fig. 1) comprises the design of
the abstract DSL, while the second phase (named ‘model level’ in Fig. 1) starts
when the abstract DSL is used.



Annotated Metamodel
Abstract DSL

Code Generation
(EGL)

Model-Transformation
(ETL)

Abstract DSL Instance

Concrete DSL
Fragments

ETL Interpreter

Reuseware
Composition Program

Reuseware
Composition Engine

Concrete DSL Instance

instance of

refinement of

meta level

model level

a b

c

data flow

relation

tool or 
process

artefact

Fig. 1. Overview of the architecture of our prototypical implementation

To define a new abstract DSL, language designers need to provide two arte-
facts: 1) a metamodel of the abstract DSL (labelled ‘a’ in Fig. 1), annotated to
define the transformation to the concrete DSL, and 2) a set of partial models
(labelled ‘b’ in Fig. 1) that will be mapped to by this model transformation.
Partial models are represented in our prototype through the notion of ‘Model
Fragments’ defined in Reuseware. Among other things, developers can assign a
Unique Fragment Identifier (UFI) to each model fragment. Reuseware then pro-
vides an API to obtain a model fragment by its UFI. These UFIs can be used
in the metamodel annotations to uniquely refer to a fragment to map to.

From an annotated metamodel, our prototype then generates a model trans-
formation program in ETL. The code generator that creates this model trans-
formation is written in EGL and contains the definitions of the four patterns
identified in Sect. 2. The generated ETL model transformation expects an in-
stance of the abstract DSL metamodel and transforms this into a composition
of the appropriate model fragments.

Reuseware provides a so-called composition interface for each fragment. This
interface contains two types of named points: reference points and variation
points. The former allow to extract a partial model from a complete model, while
the latter define points in a partial model that can be modified from the outside.
The actual inner structure of the fragment is hidden behind its composition
interface: which model elements a certain point maps to and whether it maps
to one or more model elements is completely transparent to the user of the
fragment. Names of points can be used for reference, e.g., from other patterns.

Fragments are composed by replacing a variation point in one fragment with
the contents of a reference point in another fragment (i.e., with a partial model).
Reuseware will ensure that such compositions always result in syntactically cor-
rect models. Compositions of fragments are expressed in composition programs.
In addition to composition links, a composition program may also include settings
through which attributes of elements of a model fragments can be set directly
(by providing a primitive value rather than other model fragments). The model
transformation generated by our prototype (cf. Fig. 1) produces a composition
program for each instance of the abstract DSL metamodel.



Once these preparations have been completed, we can begin using our new
abstract DSL. Editors for creating instances of the abstract DSL can, for ex-
ample, be built using EuGENia [7], which uses an approach similarly based on
annotations of the metamodel to generate graphical editors for DSLs. Once an
instance of the abstract DSL is created (labelled ‘c’ in Fig. 1), our prototype
transforms it into a Reuseware composition program, which is then executed to
produce the corresponding model in the concrete DSL.

4 Conclusions

We have presented a translational approach for defining abstract languages based
on more concrete languages. In contrast to an approach where a single monolithic
model transformation is constructed from scratch, our approach provides the
following benefits:

1. Simplified construction of abstract languages: details of the metamodel of the
concrete DSML are encapsulated in annotations for the mapping patterns.

2. Vertical separation of concerns in the model transformation. The approach
separates two concerns in the model transformation: 1) which configurations
of concrete-language model elements represent a specific abstract-language
model element, and 2) the mapping pattern to use when translating abstract-
language model elements into concrete-language model elements.

3. Use of concrete language tooling for the definition of concrete language con-
figurations. The approach allows the concrete-language model to be com-
posed from partial template models, each of which can be created and ma-
nipulated using standard concrete-language tooling without any need to refer
back to the concrete-language metamodel.

References

1. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6) (2000) 26–36

2. Distributed Management Task Force Inc. (DMTF): Common Information Model
Standards. http://www.dmtf.org/standards/cim/ (2008) Last visited 28/10/2008.

3. Johannes, J., Zschaler, S., Fernández, M.A., Castillo, A., Kolovos, D.S., Paige, R.F.:
Abstracting complex languages through transformation and composition. Technical
Report TUD-FI09-08 July 2009, Technische Universität Dresden (2009)

4. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On language-independent
model modularisation. Transactions on Aspect-Oriented Development, Special Issue
on Aspects and MDE (2008) To Appear.

5. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language.
In: Proc. 1st International Conference on Model Transformation (ICMT). (2008)

6. Louis M. Rose and Richard F. Paige and Dimitrios S. Kolovos and Fiona A.C.
Polack: The Epsilon Generation Language (EGL). In: Proc. European Conference
in Model Driven Architecture (ECMDA). (2008)

7. Dimitrios S. Kolovos, Louis M. Rose, Richard F. Paige, Fiona A.C. Polack.: Rais-
ing the Level of Abstraction in the Development of GMF-based Graphical Model
Editors. In: Proc. 3rd MISE Workshop of ICSE. (2009)


