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ABSTRACT

Model transformations have been studied for some time, typically
using a semantics based on graph transformations. This has been
very successful in defining, optimising and executing model trans-
formations, but has been less useful for providing a firm semantic
basis for modular, reusable transformations. We propose a novel
rendering of transformation semantics in terms of constructive type
theory and show how this can be employed for expressing depen-
dencies and guarantees of transformation modules in a formal frame-
work.

Categories and Subject Descriptors
D2.3 [Software Engineering]: Coding Tools and Techniques
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1. INTRODUCTION

Model-Driven Engineering (MDE) focuses on using models as
the central artefact of software development, and model transfor-
mations to turn them into executable code. Model transformations
can encode design rules, platform choices, or even coding conven-
tions. MDE can result in better software quality because it en-
courages developers to focus on high-level, domain-centered con-
cepts, which ensures consistency of implementation and reliability
of analysis.

As MDE is being used increasingly within science and industry,
and transformations of interest are becoming more complex, the
trustworthiness of transformations is quite rightly receiving more
attention. The informality of MDE as it currently stands makes it
untrustworthy and therefore potentially dangerous. If model trans-
formations are incorrect, the MDE process can result in software of
a lower quality than that produced by traditional software develop-
ment. A small number of errors in a complex transformation can
easily lead to an exponential number of errors in the resulting code,
which may be difficult to trace and debug.

Previous work by Terrell and Poernomo [14] has attempted to
solve this problem within a formal method known as Constructive
Type Theory (CTT). CTT possesses a property known as the Curry-
Howard Isomorphism, where data, functions and their correctness
proofs can be treated as ontologically equivalent, and where a sim-
ilar equivalence holds for the related trinity of typing information,
program specifications and programs. A practical implication of
the isomorphism is that, by proving the logical validity of a model
transformation specification, we can automatically synthesize an
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implementation of the transformation that satisfies the specifica-

tion. Following [13], we call this the proofs-as-model-transformations

paradigm.

As transformations become more complex, there is an increas-
ing need to be able to modularise them. Some work on this has
already been done [1,3,4,6-8,11,12,17, 19, 20]. However, it is
still difficult to safely reuse transformation modules as there are
currently no techniques for expressing or verifying a transforma-
tion module’s dependencies. In [14], Terrell and Poernomo showed
how proofs-as-model-transformations allows us to develop a struc-
tured approach to provably correct model transformations, defining
maps between class hierarchies. In this paper, we sketch how this
approach can be extended to formally express contracts for trans-
formation modules. In particular, we show how the higher-order
nature of CTT can enable a natural characterisation of a transfor-
mation module’s dependencies.

2. SPECIFICATION AND DEVELOPMENT
OF MODEL TRANSFORMATIONS

Constructive Type Theory (CTT) as a formal method is like a
conventional functional programming type system that has been
extended to include logical specifications, so that a valid type in-
ference is also a proof of program certification. For example, just

as we can find terms 2 and + that satisfy
2:int  or 4 :int*xint — int

as valid type inferences in a typical functional programming lan-
guage, we can also develop a term ¢ in CTT such that

t:Vz :int.Jy : int.Greater PrimeNumber(z,y) (1)
Any such term ¢ is simultaneously

e aprogram that, given an input x, will output a prime number
y greater than x satisfying Greater Prime Number(x,y);

e a proof that the program meets its specification.

That is, ¢ is proof-carrying code, a program and a certification of
the program’s correctness with respect to its specification (1).

We have applied the same principle to model transformations,
extending the type system to accommodate EMOF like metamodels
as types so that we can develop certified model transformations ¢
by developing a type inference of the form

t :Vz : Source.Pre(z) — Jy : Target.Post(z,y)
Any such term ¢ is simultaneously

e a model transformation that, given an input model = of meta-
model Source, will output a model y of metamodel T'arget;



e a proof that the model transformation meets its specification.

In the next section, we present a brief summary of how CTT can
be used to specify and develop model transformations.

2.1 Constructive Type Theory

We sketch our version of constructive type theory (a sugared ver-
sion of Coquand and Huet’s Extended Calculus of Constructions,
the type theory at the heart of the Coq theorem prover).

The CTT is a lambda calculus whose core set of terms, P, are
given over a set of variables, V:

P ::=V|\V. P|(P P)|(P, P)|fst(P)|snd(P)|inl(P)linr(P)|
match P with inl(V)) = P | inr(V) = P

The lambda calculus is a functional programming language. We
can compile terms and run them as programs. As such, the calculus
is equipped with an evaluation semantics. Lambda abstraction and
application are standard and widely used in functional program-
ming languages such as SML. The term A z. P defines a function
that takes x as input and will output P[a/x] when applied to a via
an application (A x. P)a. The calculus also includes pairs (a, b),
where fst({a, b)) will evaluate to the first projection a (similarly
for the second projection). Case matching provides a form of con-
ditional, so that match z with inl(z) = P | inr(y) = Q will
evaluate to P[z/a] if z is inl(a) and to Q[y/a] if z is inr(a). Eval-
uation is assumed to be lazy — that is, the operational semantics is
applied to the outermost terms first, working inwards until a neutral
term is reached. We write a > b if a evaluates to b according to this
semantics.

Like most modern programming languages, the CTT calculus is
typed, allowing us to specify, for example, the input and output
types of lambda terms. We write

f:T

to signify that a term f has type 7.

The terms of our lambda calculus are associated with the fol-
lowing kinds of types: basic types, e.g. integers, functional types
(A — B), product types (A x B), disjoint unions (A|B), depen-
dent product types (ILz : ¢t.a) and dependent sum types (Xx : t.b),
where in both cases « is taken from V. The first three types have
the standard meaning found in typical functional programming lan-
guages. For example,

t:(A— B)

means that ¢ is a function that can accept as input any value of type
A to produce a value of type B.

The next two types require some explanation. A dependent prod-
uct type expresses the dependence of a function’s output types on
its input term arguments. For example, if

(Az.t) : Mz : T.F(x)

then the function (Az.t) can input any value a of type T', producing
an output value ¢[a/x] of type F'(a). Thus, the final output type of
the function is parameterized by the input value.

Similarly, the dependent sum type expresses a dependence be-
tween the type of a pair’s second element and the value of its first
element. For example, if we have a pair

({(a,b)) : Xz : T.F(x)

then the type of b is F'(a).
Typing rules provide a formal system for determining what the
types of lambda terms should be.

We have extended the standard way of encoding objects and
classes, using record types of the same form as found in functional
programming languages such as SML. Bidirectional and cyclic de-
pendencies pose a technical problem to CTT. We solve this by us-
ing co-inductive record types. Co-induction over record types es-
sentially allows us to expand as many references to other records
as we require, simulating navigation through a metamodel’s cyclic
reference structure. The formal treatment of these concepts is given
in [14].

2.2 Proofs as Model Transformations

The Curry-Howard isomorphism shows that constructive logic
is naturally embedded within our type theory, where proofs cor-
respond to terms, formulae to types, logical rules to typing rules,
and proof normalization to term simplification. Consider the set
of well-formed formulae W F'F', built from exactly the same pred-
icates that occur in our type theory. We can define an injection
asType from W F'F to types of the lambda calculus as in Fig. 1.

A asType(A)
Q(x), where @ is a predicate Q(x)
Ve :T.P [[z: T.asType(P)

Jz: T.P Yz : T.asType(P)
PAQ asType(P) = asType(Q)
PVQ asType(P)|asType(Q)
P=Q asType(P) — asType(Q)

1 1

Figure 1: Definition of asType, an injection from W FF to
types of the lambda calculus.

The isomorphism tells us that logical statements and proofs cor-
respond to types and terms. We assume we have a proof inference
system for constructive logic -7, (similar to the inference systems
taught in undergraduate logic classes, where I" -1, P means that
a proposition P can be logically deduced from a set of assumptions
).

Theorem 1 LetT" = {G4,..., Gy} be aset of premises. Let IV =
{z1:G1,...,z, : G} be a corresponding set of typed variables.
Let A be a well-formed formula. Then the following is true. Given
a proof in constructive logic of I" ki, A we can use the typing
rules to construct a well-typed proof-term p : asType(A) whose
free proof-term variables are I''. Symmetrically, given a well-typed
proof-term p : asType(A) whose free term variables are I, we can
construct a proof in constructive logic I' - A. a

Because the isomorphism holds, we will often omit the use of
asType and use logical connectives and quantifiers instead of their
computational counterparts (and vice versa) where there is ambi-
guity (for example, we will write ¥ instead of 11 if the context makes
it clear that a dependent product is being employed).

The key implication of this theorem is that

e types can be considered to be specifications of functional
programs and

e an inhabitant of a specification type can be considered to be
both a program that satisfies the specification and a proof of
this satisfaction.

These results are entailed by the following.

Theorem 2 LetT" = {G4,..., Gy} be aset of premises. Let IV =
{z1:G1,...,z, : G} be a corresponding set of typed variables.
LetVz : T.3y : U.P(x,y) be a well-formed V3 formula.



If
Fp:asType(Vz : T.3y : U.P(x,y))
is a well typed term, then
F Vo : T.P(z,fst(pz))
is provable. a

The theorem means that, given a proof of a formula Vx : T'.3y :
U.P(z,y), we can automatically extract a function f that, given
input z : T, will produce an output fx that satisfies the constraint
P(z, fz).

Our notion of proofs-as-model-transformations essentially fol-
lows from this theorem. Given that we have the machinery to type
the structure of arbitrary metamodels, a model transformation be-
tween two metamodels Source and T'arget can be thought of as a
functional program

t: Source — Target

Such a program can be specified as set of constraints over instances
of the input x : Source and output y : Target metamodels. In
the simplest case, we can consider these constraints to be of a pre-
condition Pre(x) that is assumed to hold over input metamodel
instances x : Source, and a postcondition relationship Post(x, y)
that holds between x and required output metamodel instances v :
Target.

Given types Source and T'arget to represent the source and tar-
get metamodels, and constraints as logical formulae over terms of
the metamodels, we can then specify the transformation by a for-
mula

Vz : Source.Pre(xz) — Jy : Target.Post(z,y)

After that, we can attempt to find a certified transformation by iden-
tifying an inhabiting term ¢ of

t:Vx : Source.Pre(z) — Jy : Target.Post(z,y)

If we look at the meaning of the types (recall that V corresponds to
a dependent product IT and 3 to a dependent sum ), we see that
t must be a function that takes in any input x of type Source and
returns a pair

tx = (w,p)

In order to synthesize a provably correct model transformation, we
apply the extraction mapping over ¢ according to Theorem 2: this
will give us the required model transformation fst(¢) = w and a
certification of the transformation’s correctness, a proof snd(t) =
p.

3. MODULARISING MODEL TRANSFOR-
MATIONS

There has been considerable research interest in modularising
model transformations for some time already. The approaches pro-
posed and studied so far, may be characterised by the granularity of
modules that they provide: At a first level, we can distinguish inter-
nal composition of transformation rules from external composition
of entire model transformations [10]. We can further differenti-
ate internal composition into inter-rule composition, where entire
rules are taken to be modules, and intra-rule composition, where
rules themselves can be composed of finer-grained modules. In the
following, we will briefly discuss each of these compositions in
turn.

3.1 External Composition

External composition takes entire model transformations to be
modules that can be independently reused and composed. Early re-
search on external composition focused mainly on languages and
tools for describing and executing such compositions of reusable
model transformations. This has led to early work on MDA com-
ponents [4], megamodelling [5], transformation chaining [3,6, 17],
and transformation configuration [19].

As all of this work considers transformations as black-box com-
ponents to be composed into larger components, the ‘signature’ or
‘interface’ of a transformation becomes important. These terms
refer to the information that can be obtained about a transforma-
tion without inspecting its implementation. Initial work on exter-
nal composition [12, 18] defined transformation signatures by two
sets of metamodels: one typing the models that the transformation
consumed and another typing the models produced by the trans-
formation. Later research [6] found that this is not always suffi-
cient information for safely composing transformations. In partic-
ular, endogenous transformations transform between models of the
same metamodel, but may well only address particular elements
within this metamodel. Information about the metamodel thus be-
comes useless when composing a set of endogenous transforma-
tions. In addition, some endogenous transformations may be in-
tended to be used with a fixpoint semantics (invoking them until
no more changes occur), which makes composing them even more
complex. It was concluded in [6] that in addition to the metamodel,
there needs to be information about the particular subset of model
elements that are used or affected by a transformation. In parallel to
this work, [17] also identified a need to include information about
the technical space of models (e.g., MOF or XML) into the trans-
formation signature. Alternatively, some of this information has
been encapsulated by wrapping models as components themselves,
providing interfaces for accessing and manipulating the model in a
fashion independent of the technical representation [12].

3.2 Internal Composition

Internal composition considers modules of a finer granularity
than entire model transformations. Inter-rule composition consid-
ers individual rules to be modules, while intra-rule composition
considers even finer-grained modules, i.e. parts of rules.

3.2.1 Inter-rule Composition

A number of transformation languages consider transformation
rules to be the unit of modularity. A number of mechanisms are
provided for composing rules into transformations, including im-
plicit and explicit rule invocation, and rule inheritance [3, 11]. Ap-
proaches inspired from graph transformation—for example, VMT
[16]—even allow for chaining of individual transformation rules.
Module superimposition [20] applies the notion of superimposition
from feature-oriented software development [2] to the development
of transformation modules, allowing individual rules to be overrid-
den by rules from superimposed modules.

All of these techniques create some flexibility in allowing devel-
opers to exchange or independently evolve rules. However, they do
not distinguish a rule’s interface from its implementation, which
means that rules and rule compositions cannot be verified or under-
stood modularly without inspecting the complete implementation
of each rule. Furthermore, some evaluations have shown that there
are scenarios where the modularisation capabilities available at the
level of complete rules are not sufficient [7, 8, 11].

3.2.2 Intra-rule Composition

To improve modularisation capabilities, a number of mechanisms



have been proposed that allow parts of rules to become units of
modularity. Balogh and Varré [1] describe how matching and cre-
ation patterns can be defined as standalone units of modularity, and
composed into more complex patterns for use in transformation
rules. Johannes et al. [9] allow rules to be composed and gener-
ated from a number of pattern instantiations annotated to the source
metamodel.

While these approaches clearly improve the modularity capabil-
ities of inter-rule composition approaches, they still do not enable
modular verification or understanding.

In summary, while most of these techniques provide some assur-
ances with respect to the syntactic correctness of models produced
from a composed transformation (if only by virtue of the fact that
they abide by a metamodel), there is very little support for modular
reasoning about semantic properties. In the next section, we pro-
pose a formal encoding of transformation semantics, which allows
us to provide modular reasoning and verification about semantic
transformation properties.

4. MODULAR TRANSFORMATION FUNC-
TIONS

Higher-order quantification is the ability to make statements that
are generic or parametrised over other functions, statements or
proofs of statements. The proofs-as-model-transformations idea,
when combined with higher-order quantification, allows us to for-
mally treat modularity in transformations and transformation spec-
ifications.

The higher order nature of CTT allows us to parametrize state-
ments over variables that stand as placeholders for other statements.
This is achieved by introducing a higher-order universe type Prop
of all propositions: the type allows us to treat logical statements as
forms of data to be quantified over, just like integers or strings. We
can therefore define specifications that are parametrized with re-
spect to arbitrary sub-requirements. For example, we can parametrize
the specification of a transformation from UML to relational databases
as

Vz:UML.
SubReq : (UML « RDBS) Jy: RDBS. @)
— Prop. Post(z,y)A
SubReq(z,y)
The predicate variable SubReq stands for any sub-

requirement we might have over the input and output model in-
stances of the transformation. It could, for example, stand for a
proposition CT'S(z, y), which asserts that the number of tables in
a relational database y : RDBS is greater than or equal to the
number of classes in an input UML diagram x : UM L. Given
a proof of (2), the variable SubReq could then be replaced with
CT'S, yielding an instantiated version of the generic specification:

Va : UML.3y : RDBS.Post(z,y) N CTS(z,y)

This instantiated formula can be considered to be a version of the
generic specification, rendered specific to a particular requirement
about classes and tables.

We can combine this treatment of parametrised specifications
with the Curry-Howard isomorphism to define a notion of trans-
formation modularity that includes a formal treatment of certified
parameters. This is done by quantifying, not only over subrequire-
ments, but also over arbitrary programs and proofs.

For example, we are able to parameterise a specification over an
assumed input proof of a sub-requirement. Consider the modular
transformation dependency given in Fig.2. The right hand mod-

ule represents a generic, structural transformation between UML
object diagrams such that an input object A : UO is mapped to
a new root object B : UOQ, standing in A.b number of relations
to a list of objects, CL : List(UO). Assume this mapping has
been defined by the predicate Map(A, B, CL). The specification
is generic over the properties that might hold over each C' € C'L
(in particular, its attribute c): this subrequirement is defined as a
predicate variable SubReq(A, C).

We can define a type for the modular transformation with param-
eters representing both the subrequirement and an assumed proof
pr of the subrequirement as follows

\v/ SubReq : UO x UO — Prop.
pr:VA:UO.3C : UO.SubReq(A, C).
VA:UO.3B:UO.3CL : List(UO). A3)
Map(A, B,CL)A
VC € CL.SubReq(A, C)

The parameter pr stands for a proof that, given any A, we can find
a C such that SubReq(A, C). It would be employed in the proof
of the composed, instantiated transformation to certify that a par-
ticular data transformation between the source and target can be
plugged in to the structural transformation.

Note that the parameter SubReq in the example above predi-
cates over individual model elements, as opposed to M ap, which
deals with the entire model structure. This formally expresses the
separation of concerns between the structural transformation M ap
and its parameter, which can only specify data transformations.

Thus, higher-order quantification over proofs and subrequire-
ments allows us to

o formally represent modular specifications, parametrised over
desirable subrequirements.

e by the Curry-Howard ismorphism, instantiation of such
parametrised specifications correspond to certified modular
transformations.

5. CONCLUSIONS

As model transformations become more important to software
development, systematic development of these transformations be-
comes itself more important. We have shown our current ideas on
how constructive type theory can be used to formally express the
interfaces of, dependencies between, and contracts supported by
transformation components. A key enabling factor in this has been
the use of higher-order type theory, which allowed us to quantify
(i.e., parametrise) over predicates and proofs of these predicates.
This has enabled a transformation module to express precisely what
it expects of other transformation modules with which it can be
composed.

In the present paper, we have presented the essential idea of our
approach using an extremely academic example only. We are cur-
rently working to apply this idea to examples of modular transfor-
mations from [9, 11] and hope to report on this more extensively in
a further publication.
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