
Tailor-Made Containers: Modeling Non-functional
Middleware Service

Ronald Aigner, Christoph Pohl, Martin Pohlack, and Steffen Zschaler

Technische Universität Dresden
Dresden, Germany

{Ronald.Aigner, Christoph.Pohl, Martin.Pohlack,
Steffen.Zschaler }@inf.tu-dresden.de

Abstract. We propose to create tailor-made application servers by composing
components providing support for individual non-functional properties. In this
position paper we start from a static, asymmetric approach splitting the appli-
cation server in two parts to support realtime properties and generalize this to a
symmetric, componentized architecture. We then analyse how modelling of non-
functional properties of systems is influenced by this application server architec-
ture.

1 Introduction

In the COMQUAD1 project we are developing a container that enables guarantees of
non-functional properties of component-based software. In a recent paper [1] we re-
ported on the container’s architecture, which has been split into two parts—one which
is generic, but cannot give realtime guarantees, and one which is specific to realtime—to
enable us to efficiently support realtime properties, as well as confidentiality properties,
while reusing large parts of code for component management (namely the open-source
JBoss application server [2]). In this position paper we want to explore how this idea of
splitting the middleware into two parts can be generalized to other properties, and how
this affects the modeling of these properties. In particular, we want to examine how the
container and the properties it provides for can be modeled in such a way as to allow a
property-specific container to be assembled from various parts.

We propose to modularize containers as aspects that are woven together with the
actual componentdepending on the set of non-functional properties to be supported. A
container then consists of a core part, which is responsible for generic component man-
agement and provides the hooks to which the component itself, as well as the aspects
implementing various non-functional properties, can be connected. In order for this to
work automatically, either at runtime or at deployment time, both the aspects and their
relation to the non-functional property(ies) they realize need to be modeled. In particu-
lar it is important to model the interdependencies between different properties or their
implementing aspects, respectively.

1 COMponents with QUantitative properties and Adaptation, a project funded by the German
Research Council



The rest of this position paper is structured as follows: Section 2 gives a short
overview of our split container architecture as presented in [1]. This architecture is then
generalized in Sect. 3 into a componentized, symmetric architecture. The main section
of the paper is Sect. 4, which gives a more detailed analysis of different approaches to
modeling the relation between non-functional properties and the aspects implementing
them. Finally, we briefly review some related work and summarize our position paper.

2 A Split Container Architecture

In the course of theCOMQUAD project we built a component container with sup-
port for non-functional properties. This includes the ability to fulfill realtime require-
ments of components. Support for realtime includes the ability of the middleware—the
container—and the underlying operating system to provide guarantees for timeliness of
execution. It also includes that resources required by a component can be provided to
this component when required within a predefined time span. Such guarantees can be
given if the component—or some representative of the component—make a reservation
with a manager of the resources. The resource manager will then guarantee the timely
access to the resource.

Thus, it is essential to extend the container by a resource management providing
services for admission and reservation of system resources, such as CPU time, network
bandwidth, or memory. The key part of the container is the contract manager, which
instantiates and connects the components required to service a client request. In order
to select the correct components and component implementations, the contract manager
uses the functional and non-functional (including realtime) component specifications.

Typically, applications that give guarantees on realtime properties are split into two
parts:(i) a small part of code that performs the actions for which guarantees of realtime
properties are essential and(ii) a usually much larger part for which realtime guarantees
are not important. This distinction can be applied to the architecture of a component
runtime environment. Most of the complex work is done in the non-realtime part of
the component environment. It manages the available component implementations and
application specifications, handles requests for creation of component networks, nego-
tiates contracts between components, and maintains a model of the instantiated com-
ponents and the networks formed by them. The realtime part is essentially restricted to
actually instantiating components, reserving resources, and executing the instantiated
components in response to user requests.

This concept is closer to the reality of applications with realtime properties than the
approach of monolithic realtime applications. Additionally, it also allows us to make
use of advanced component technology (namely JBoss [2]) on the non-realtime side
while still being able to make full use of the realtime and resource reservation features
of the underlying platform on the realtime side. Thus, we can leverage the best of both
worlds and move towards a running prototype very efficiently.



core

security realtime reliability

core

security realtime

non-functional
requirements

⊗

Fig. 1.Composition of a property-specific container from core and property-specific functionality

3 A Componentized Container Architecture

The split container architecture we introduced in Sect. 2 proved to be a sensible de-
cision for the design of dependable component-oriented systems with support for re-
altime guarantees. Our current container architecture is now split into two parts: The
non-realtime container is based on JBoss, running in a standard Java Virtual Machine
(JVM) on L4Linux and providing complex services, such as a component repository.
The realtime container is running directly on the L4 microkernel. It contains all the
realtime-capable components and the necessary infrastructure.

This motivated us to investigate if other non-functional properties can be handled in
a similar way. Consequently, we tried to find similar “splitting lines” in the correspond-
ing middleware support code for those properties and examined possible correlations to
our previously introduced architecture split for realtime–non-realtime system parts.

The idea was that, provided we could show these splits to be “congruent”2, we
would then be able to generalize our split architecture for use with other properties.
However, these splits are not congruent in general; they rather relate to each other in an
arbitrary fashion. We therefore propose a more symmetric architecture, which has been
depicted in Fig. 1. This architecture provides a set ofcore servicessuch as instantiation,
component connection, and so on, and a set ofproperty dependent services. We propose
a container generation operator⊗ that creates custom-made containers by selecting
the appropriate property dependent services and weaving them together. This container
generation is performed either dynamically at runtime or statically at deployment time.

Container generation can only be automated if the non-functional properties under
consideration as well as the components providing support for them have been appro-
priately modeled. This will be the subject of the following section.

2 congruent in terms of mutual non-overlapping parts: a lean, mission-critical part and a non-
critical management part, which are identical for different non-functional properties



4 Modeling Aspects

In this section we are going to evaluate various approaches to modeling property de-
pendent services so that they can be automatically selected and merged. We start out
by looking at the JMX [3] architecture as a conceptual model and explain why this is
not sufficient for our purposes. We then show how aspect-oriented approaches can be
applied in our case, but also what the related drawbacks are.

The idea arose to model specific non-functional aspects using a plug-in–extension
model such as JMX in JBoss [2]. To illustrate this approach and its limitations we will
outline some steps required to provide fuzzy time. One important aspect of security is
confidentiality—that is, information must not become available to unauthorized sub-
jects. Covert channels are one way through which information could be transfered se-
cretly and must therefore be considered if confidentiality is one required non-functional
property. Covert channels can be classified into storage and timing channels and have
been a research subject for many years [4].

In practice covert timing channels cannot be prevented completely. Instead it is
common to limit their bandwidth by impeding unprivileged subjects’ access to accurate
time sources. For instance, a system could delay the execution of each system call for a
random amount of time. In the literature this is called imprecise clocks or fuzzy time.

There is an obvious conflict between realtime requirements and the imprecision of
time, as timeliness can not be assured for specific services at the same time as the ac-
cess to accurate timers is restricted. Investigations about the impact of such solutions
on realtime systems have already been undertaken years ago. Son et al. [5] describe a
very domain specific solution for a realtime database with security requirements. The
authors propose to temporarily weaken the security requirements to fulfill realtime re-
quirements, thereby providing a tradeoff between realtime performance and security.

Enforcement of fuzzy time requires pervasive modifications of several underlying
services, possibly including program code inspection. All access to time sources must
be encapsulated. Possibly the simplest thing to do would be to add a random delay to all
services providing timing information, for example a system call to operating system.
However, one also needs to prevent access to other time sources, such as NTP servers,
which are reachable via network access. As one cannot filter all network traffic for all
time sources (network traffic may be encrypted or steganography might be used to hide
the data transported), network access must also be delayed for a random amount of time.
Unfortunately, many services might be used as time source. Consequently, to provide
fuzzy time many components must be considered. This is more than can be modeled
with the concepts provided by JMX, which allow only simple non-invasive extensions
to the container’s functionality.

Invasive modifications are the domain of aspect-orientation [6, 7]. We will therefore
analyze how we can use aspects to model property dependent services. Looking more
closely at the examples from our experience, we find that we need to extend the standard
notion of aspects in at least three ways:

1. Aspects providing for non-functional properties require join points on two levels:



(a) A runtime level, where they need to be able to intercept method calls, events,
or data packets on a stream connection. These join points can be and have been
conveniently implemented using interceptors.

(b) A meta-level, where they need to be able to intercept state changes in a com-
ponent’s life cycle. These join points cannot be implemented by standard in-
terceptor technologies, but require special reflective support at components’
meta-level [8].

These special issues of dynamic insertion and configuration of non-functional prop-
erties have also been realized by the developers of OpenORB/OpenCOM [9], La-
sagne [10], and OIF [11], among others.

2. Aspects come with pre-conditions. For example, an aspect may require certain other
aspects to be present or absent, or certain operations to be available, in order to
provide the non-functional property it supports. These pre-conditions are semantic
in nature; that is, they do not only require certain names to be available, but certain
structures resp. behaviors. This can potentially be combined with techniques from
the Model Driven Architecture (MDA, [12]) using UML extension mechanisms for
semantic markup and code generation.

3. Aspects need to be parameterized. For instance, because an aspect providing re-
sponse time properties will be used for different specific response times, there must
be a way to pass this in as a parameter, which may already have to be considered at
the time of weaving.

An open research issue remains the interference of apparently orthogonal aspects.
There are no general solutions to model such influences. The approach of simply using
constraint UML dependencies and OCL expressions is clearly limited to effects that
are known in advance. However, unanticipated interactions and side-effects are much
harder to capture during the software development life cycle. This effect is actually a
subset of a problem area called “feature interaction” [13], which has been discussed
in the telecommunications community since the early 1990s. An example for this is
the treatment of security by means of cryptography, which we introduced in [14]. The
container infrastructure has to handle the tradeoff between performance (in terms of
timeliness) and security (in terms of confidentiality and integrity). We believe that there
are many of these conflicting non-functional requirements and presented these as a
prominent and apparent example. We also believe that there are many domain-specific
models to cope with the conflicting goals, which should be integrated into a common
modeling framework.

5 Related Work

The concepts of Model Driven Architecture (MDA) and Model Driven Middleware
[15] include the application of models to middleware configuration and implementa-
tion. These include the integration with QoS aware middleware and application. The
described tool chain and models also mention the problem of interfering requirements,
but do not provide a solution beyond their detection. Nonetheless does MDA provide
means to describe QoS requirements on different levels of abstraction.



The PURE operating system family [16] exploits the concept of aspect oriented
programming to build tailored operating systems. Similar to our concept of generated
containers for specific non-functional propertiesPURE uses AspectC++ [17] to gen-
erate operating systems adapted to the demands of the application running on top of it
and the available hardware. Aspects are used to describe and implement the features of
the operating system, such as scheduling strategies. As described in this paper, aspects
cannot be applied to interfering non-functional properties, such as security and realtime.

Requirements for realtime extensions for Java were defined in the NIST report [18].
The NIST group proposes partitioning the execution environment into a realtime core
providing the basic realtime functionality and a traditional JVM, which services normal
Java applications. Based on these requirements, the J Consortium defined the Real-
Time Core Extensions for Java (RTCE) [19], which follow the idea of a separate core
for realtime services. In contrast, in the Real-Time Specification for Java (RTSJ) [20] all
services are provided in one JVM, as such containing the realtime and the non-realtime
applications. The architectural RTCE approach is similar to the design of our system,
in that both run large and complex parts in a classic non-realtime environment and only
small, predictable parts in a realtime environment.

Dassault Systèmes introduced a general architecture for software components with
support for arbitrary non-functional properties [21]. Their concept for weaving non-
functional aspects is very similar to our proposition in that they suggest to generate spe-
cialized containers comprising the specific services that are actually needed according
to the non-functional requirements of the application. New services can be defined using
an aspect definition language; they can be put at use by means of an aspect user lan-
guage. However, there is no concept so far for supporting composition of aspects. Fea-
ture interaction and interference of orthogonal aspects also remain open issues. Also,
the non-functional properties shown in [21] are those which can already be handled by
modern application servers. It is not clear from the paper whether the authors would be
able to model a realtime aspect such as frame rate of a video player.

6 Conclusions

In this position paper we presented the shift from our split container architecture with
support for realtime properties towards a more general, componentized approach to
dynamically weaving customized runtime environments with support for arbitrary non-
functional aspects for component-based software applications. We conclude that the
generalized version of the container architecture is a promising step forward, that needs
further work and which we would like to suggest as a field for future research. The
most interesting research issues remain in the field of modeling the different services
required for supporting non-functional aspects. We have shown that even the current
state of Aspect-Oriented Modeling still has a number of drawbacks, especially in terms
of capturing interferences of aspects, which require more work in that direction.

In [22] and [23] we presented a formal approach to the specification of non-functio-
nal properties of component-based systems. The work started in this position paper
should enable us to extend the work reported on in those papers to support independent
specification of multiple non-functional properties of the same system.



References

1. Göbel, S., Pohl, C., Aigner, R., Pohlack, M., Röttger, S., Zschaler, S.: The COMQUAD
component container architecture. In Magee, J., Szyperski, C., Bosch, J., eds.: 4th Working
IEEE/IFIP Conf. on Software Architecture (WICSA), Oslo, Norway, IEEE (2004) 315–318

2. Fleury, M., Reverbel, F.: The JBoss extensible server. In Endler, M., Schmidt, D., eds.:
International Middleware Conference. Volume 2672 of LNCS., Rio de Janeiro, Brazil, ACM
/ IFIP / USENIX, Springer (2003)

3. Sun Microsystems: Java Management Extensions (JMX) Instrumentation and Agent Speci-
fication. v1.2 edn. (2002) http://java.sun.com/products/JavaManagement/.

4. Millen, J.: 20 Years of Covert Channel Modeling and Analysis. Technical report, Computer
Science Labroratory, SRI International, Menlo Park, CA (1999)

5. Son, S.H., Mukkamala, R., David, R.: Integrating security and real-time requirements using
covert channel capacity. IEEE Transactions on Knowledge and Data Engineering12 (2000)
865–879

6. Elrad, T., Aldawud, O., Bader, A.: Aspect oriented modeling—bridging the gap between
design and implementation. In Batory, D., Consel, C., Taha, W., eds.: Generative Program-
ming and Component Engineering (GPCE 2002). Volume 2487., Pittsburgh, PA, USA, ACM
SIGPLAN/SIGSOFT, Springer (2002) 189–201

7. Aldawud, O., Elrad, T., Bader, A.: UML profile for aspect-oriented software development.
In Aldawud, O., ed.: 3rd International Workshop on Aspect-Oriented Modeling with UML,
Boston, USA, ACM SIGSOFT / SIGPLAN (2003) In conjunction with the International
Conference on Aspect-Oriented Software Development (AOSD’03).

8. Kiczales, G., Rivieres, J.D., Bobrow, D.G.: The Art of the Metaobject Protocol. MIT Press
(1991)

9. Blair, G.S., Coulson, G., Robin, P., Papathomas, M.: An architecture for next generation
middleware. In Davies, N., Raymond, K., Seitz, J., eds.: Middleware 1998, The Lake District,
England, IFIP, Springer (1998)

10. Jørgensen, N., Truyen, E., Matthijs, F., Joosen, W.: Customization of object request brokers
by application specific policies. In: Distributed Systems Platforms. Volume 1795 of LNCS.,
New York, IFIP/ACM, Springer (2000) 144–163

11. Filman, R.E., Barrett, S., Lee, D.D., Linden, T.: Inserting ilities by controlling communica-
tions. Communications of the ACM45 (2002) 116–122

12. Miller, J., Mukerji, J.: MDA Guide. The Object Management Group. Version 1.0.1 edn.
(2003) OMG document number omg/2003-06-01.

13. Pulverm̈uller, E., Speck, A., D’Hondt, M., DeMeuter, W., Coplien, J.O.: Feature interaction
in composed systems, ECOOP 2001 Workshop Proceedings. Technical Report 2001-14,
Universiẗat Karlsruhe (2001)

14. Franz, E., Pohl, C.: Towards unified treatment of security and other non-functional proper-
ties. In: Workshop on AOSD Technology for Application-Level Security (AOSDSEC’04),
Lancaster, UK (2004)

15. Gokhale, A., Schmidt, D., Natarajan, B., Gray, J., Wang, N. In: Model Driven Middleware.
John Wiley & Sons, Ltd. (2004)

16. Beuche, D., Guerrouat, A., Papajewski, H., Schröder-Preikschat, W., Spinczyk, O., Spinczyk,
U.: On the development of object-oriented operating systems for deeply embedded systems
- the PURE project. In: Proc. 2nd ECOOP Workshop on Object-Orientation and Operating
Systems (Lisbon, Portugal). (1999) 27–31

17. Spinczyk, O., Gal, A., Schröder-Preikschat, W.: Aspectc++: An aspect-oriented extension
to c++. In: Proc. 40th Int’l Conf. on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia (2002)



18. National Institute of Standards and Technology: Requirements for Real-time Extensions for
the Java Platform. (1999) Available at http://www.nist.gov/rt-java/.

19. J Consortium: Real-Time Core Extensions (RTCE). (2000) Available at http://www.j-
consortium.org/.

20. The Real-Time for Java Expert Group: The Real-Time Specification for Java. v1.0 edn.
(2001) http://www.rtj.org/.

21. Duclos, F., Estublier, J., Morat, P.: Describing and using non functional aspects in component
based applications. In: Proc. 1st Int’l Conf. on Aspect-Oriented Software Development,
Enschede, The Netherlands, ACM, ACM Press New York, NY, USA (2002) 65–75

22. Zschaler, S.: Towards a semantic framework for non-functional specifications of component-
based systems. In: Proc. EUROMICRO conference 2004, track on Component-based Soft-
ware Engineering, Rennes, France (2004) To appear.

23. Zschaler, S.: Formal specification of non-functional properties of component-based software.
In: Proc. Workshop on Models for Non-functional Aspects of Component-Based Systems.
(2004) Submitted for Publication.


