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Abstract

In parallel to the release of UML 2.0, also a new version of the Object Con-
straint Language (OCL) has been published. OCL is a language for precise textual
description of constraints which apply to the graphical UML models. The new
OCL 2.0 standard goes far beyond the previous language, not so much in fea-
tures but mainly in the approach chosen for laying much more precise and formal
foundations for the language. This paper, authored by members of the OCL 2.0
team, gives an overview of the new aspects of OCL 2.0 and also provides a critical
discussion of a few selected aspects of the language.

1 Introduction

The Unified Modeling Language (UML) [5] has the goal of providing a standard nota-
tion for all aspects of modeling in Software Engineering. Most of this modeling is done
in a graphical way using various diagrams. However, since version 1.1 of the standard,
UML contains a purely textual sublanguage which serves as a tool to express proper-
ties which are too complex to be expressed in a diagram adequately. This language, the
Object Constraint Language (OCL) [13, 14], is targeted at two different areas of appli-
cation. On one hand, it finds its main application in the definition of the UML standard
(and a few other OMG standards), being applied on the meta-level and being used,
e.g., for expressing well-formedness conditions for UML diagrams. On the other hand,
OCL is also suitable as a lightweight replacement for formal specification languages
(like Z, VDM, OBJ etc.). In this case it is applied on the level of application modeling,
where it is used to express properties like invariants of the static class model, pre- and
postconditions for operations and guards for state transitions. Although OCL has not
yet gained much popularity for formal specification in software development, it has
been recoginzed as one of the most interesting candidate languages for programming
by contract, e.g., for platform-independent description of software components [2, 1].
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In the past, OCL has been criticized frequently for the fact that this language, which
aims at improving the formal preciseness of UML, does not have any formal basis for
itself. Various suggestions for a more precise semantics of OCL have been produced
over the years, for instance [12, 7, 6].

With the preparation of version 2.0 of the UML standard, there was a chance to re-
act to the criticism and to improve the formal basis of the language. The OMG had put
out separate calls for the improved OCL specification, independent of the UML core
standardization process. This made it relatively easy to form a consortium of people
(from industry and academia) which were specialized in the technical issues of OCL
and in particular in the foundation issue. The authors of this contribution were part of
the OCL 2.0 team and report here about the innovations in the language. Moreover,
a critical discussion of a few selected aspects of the language is given. Therefore, the
paper is structured into two main sections dealing with these two topics.

2 What’s new in OCL 2.0?

In general, the transition to OCL 2.0 [4] has been defined in a way which hopefully
does not disturb too much the slow process of adaptation of OCL. There are just a very
small number of additional language constructs which are particularly useful for OCL
as a contract specification language. Besides that, the main effort went into improving
the formal basis of the language.

2.1 Metamodel

The concepts of OCL 2.0 as well as the relationships between these concepts have
been expressed in the form of a MOF metamodel. Because UML is also formulated
as a metamodel, this allows a much cleaner integration of OCL 2.0 into the UML.
In addition, the presentation is much more formal and allows mapping to a semantic
domain much more easily than previous versions of the OCL, which had no metamodel
representation.

The OCL metamodel consists of two major parts: the types package and the expres-
sions package. The types package defines the types which are recognized by OCL and
relates them to core UML concepts. It may be worthwile to point out that every type
is a super type ofOclVoid , which implies that the undefined valueOclUndefined
is an element of every type in OCL. This includes the Boolean type which means that
OCL 2.0 (as its predecessor versions) has a three-valued logic instead of the more com-
mon two-valued logic. OCL defines all operations and expressions to bestrict, except
where something else is explicitly specified. An expression is said to bestrict if it
evaluates toOclUndefined whenever one of its parameters is undefined.

The expressions package is for the most part the same as in older versions of OCL.
The most important new expression types are OclMessage expressions (cf. 2.4) and
tuple related expressions.

2.2 Query Language

With version 2.0, OCL has moved from a constraint language to a full query language
for object-oriented models. The most prominent witness of this change is the intro-
duction of the tuple type. This type allows it – similarly to the record/struct types in
many programming languages – to combine multiple values of different types into one
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value. Thus they can be transported together through iterate-expressions which allows
essentially the full range of query expressions to be formulated.

Another outcome of the move towards a query language is chapter 12 of the specifi-
cation, which explicitly describes the association of OCL expressions to a UML model.
In difference to previous versions of the language, the actual specification of thelan-
guageOCL is given independently of the definition of the options forusage. In addition
to the standard usage types invariant, pre- and post-condition, or guard, the specifica-
tion also defines the use as initial or derived value expression, operation body expres-
sion, or definition expression, all of which use OCL as a generic query language.

2.3 Formal semantics

OCL 2.0 is the first version of OCL which has a defined, and standardized semantics.
Although there still remain some questions and issues this is an important step towards
a truly formal constraint language for the Unified Modelling Language. Tool vendors
now have the necessary information to build sophisticated analysis and proof tools for
UML/OCL specifications.

In fact, there are even two definitions of the semantics of OCL in the specification.
The first is based on [8] and uses a metamodelling-based approach to the definition
of the semantics. It provides a metamodel for the semantic domain and uses well-
formedness rules to map instances of the abstract syntax metamodel onto instances of
the semantic domain metamodel. The second definition of the semantics is based on
Mark Richters’ PhD thesis [11] which uses naı̈ve set theory to formulate its semantic
domain.

The specification claims that the two definitions of the semantics are equivalent.
However, only the metamodelling based approach has normative character.

2.4 OclMessages

The OCL 2.0 specification introduces the concept of message expressions. These can
be used to state that a certain message has been sent from a classifier during a certain
period of time. A typical application of this concept is to specify that an operation call
has been sent over a certain port to another component, the precise semantics of which
is not known. The definitions of this concept are based on work in [9]. In the seman-
tic domain, every snapshot is extended with an input and an output queue which hold
events (orOclMessageValues ) which have been sent to or from the corresponding
object (represented by anObjectValue in the semantic domain). The object con-
straint language provides constructs to query the contents of the output queue, so that
constraints on the messages sent from a classifier can be specified.

The following two types of statements are provided:

exp ˆˆop (params) The intuitive meaning of this statement is that it extracts the
messages matching the patternop (params) from the output queue of the
object represented byexp and makes them available for further inspection as a
collection. Each parameter can be either a complete expression or a term of the
form ? : type where the specification of the type is even optional. Mes-
sages in the output queue are matched first by the name of the operation or signal
(op), then by number and type of the parameters (Including the? parameters.
If no type has been specified for these parameters they can match any type.),

3



and then current parameter values where full expressions have been given in the
pattern.

exp ˆop(params) This is a convenience shortcut forexp ˆˆop (params)
->size() = 1 .

3 Problems in OCL 2.0

After giving an overview of the new properties of OCL 2.0, we want to describe some
of the problems which still remain to be solved. We will briefly look at three areas of
the OCL, namely:

• OclMessages,

• commonSuperType

• the representation of the concrete syntax

3.1 OclMessages

The concept of message expressions is still very new in the OCL. Consequently, there
are still some issues which may be improved. We want to point out two more funda-
mental issues here, other minor issues have to be solved as well.

First, because OCL has no way to specify free variables, message expressions are
restricted to two types of constraints. We can either specify that a certain signal has
been sent or that a certain operation has been calledwithout constraining the param-
eter values in any way, or we can specify that a signal has been sent / an operation
has been called with explicitly stated parameter values. Of course the two variations
can be mixed, but it is impossible to use more powerful constraints on the parameter
values. For example, it is impossible to state that operationop has been called with a
parameter which was less than 10. Of course, we could try to use explicit existential
quantification, phrasing the above example asReal.allInstances()->exists
(r | op ˆ(r) and r < 10) , but this only works for types which actually sup-
port theallInstances operation (and therefore not for our example).

Secondly, it is often useful and important to be able to express constraints on the or-
der of messages sent from a classifier. For example, in an application of the “Observer”
pattern [3] to an implementation of a list, it is important to specify for theremove op-
eration whether the corresponding event is sent out before or after the actual removal.
Because OCL only allows to select messages with the same name in one expression and
because we cannot compare the relative times of occurence for messages selected by
different expressions, there is no way to specify such a constraint with the current OCL.
In fact it is unclear, what happens if an operation is called more than once between pre-
and post-condition time. (Unfortunately, the formal semantics of OCL 2.0 does not
cover message expressions, so there is no clarification from there.) Essentially, there
are two options:

• exp ˆˆop (params) is restricted to have a maximum size of one. In this case
we need to define which message is selected. If this is done in an indetermin-
istic way, then constraints on the parameters are hard to provide. For example,
what is the value oflet a:Integer = 7 in adder ˆadd (a) if two
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StudentStudent PoliticianPolitician

Studying PoliticianStudying Politician Political StudentPolitical Student

Figure 1: commonSuperType example

add-messages have been sent, one with a parameter of 7 and one with a parame-
ter of 6? Is it undefined? Or is it false?

• exp ˆˆop (params) contains a subsequence of the output queue which rep-
resents all the matching messages in the order in which they appear. In this case
one could actually distinguish different messages, reason about their order, and
could also handle the case where different invocations use different parameters.

3.2 commonSuperType

The OCL 2.0 specification defines the operationcommonSuperType on Classi-
fier . This operation is used in a process called type inference. Type inference is the
attempt to identify the type of an OCL expression from the expression directly without
any explicit type information being given. For example, the expressionSet {0, 1,
3.5 } can be inferred to be of typeSet(Real) using the type inference rules from
the specification.

However, consider the class diagram in Figure 1 and the following OCL expression:

let a: StudyingPolitician = ... in
let b: PoliticalStudent = ... in
Set{a, b}

What is its type? The OCL 2.0 specification states on page 52 that the element type
of a collection literal expression (Set {a, b } is such an expression) is the common
super type of all element expressions as determined by thecommonSuperType oper-
ation. From the definition of this operation it follows that the type of the above expres-
sion cannot be determined precisely. Because bothPolitician andStudent are
common super types ofa andb, Set {a, b } could have either one type ofSet(Po-
litician) or Set(Student) . The intuition of this definition ofcommonSu-
perType is clearly that the type of the expression should be determined depending on
how the expression isused. However, this is beyond the scope of the well-formednes
rules given in the specification.

5



3.3 Concrete Syntax Representation

Because the OCL 2.0 specification for the first time defines an abstract syntax in the
form of a MOF metamodel, a mapping from the concrete syntax (e.g., the grammar
for the textual represantation of OCL expressions which is given in the specification)
to the abstract syntax needs to be provided. In order to facilitate this, the grammar
provided has been extensively reworked and written down in a format which was in-
vented specifically for this purpose. There are two problems with this approach: a) it
is hard to impossible to understand how this grammar relates to the grammars of previ-
ous versions of OCL, and b) Ansgar Konermann showed in [10] that it is impossible to
derive a working parser from this specification without a good deal of guesswork while
resolving disambiguities in transforming the grammar into a LR/LALR form.

4 Conclusions

The revision of an accepted standard is always a difficult undertaking, and unfortu-
nately such an effort usually is made without a clear beforehand evaluation of the user
perceptions and the actual issues which need improvement. In the case of OCL 2.0,
there was at least one very obvious requirement, which was the improvement of the
formal basis. Significant progress has been made in this respect. However, one has to
admit that the document describing the language has grown enormously in size. Fortu-
nately, only a few people, for instance tool developers, actually have to read the main
parts of the formal definition. Still, the attempt to thoroughly apply the UML and OCL
metamodeling approach has led to a more complex syntax definition than probably
was necessary. Regarding language features, the revision has closed a few obvious
gaps. Key improvements are a proper model query language and a better support for
the interaction of a component with its “used” interfaces (which is the main applica-
tion of OCL message expressions). Nevertheless, as it has been shown above, several
issues are still open. There will be need for extensive feedback from the scientific and
industrial community to further stabilize this important sublanguage of the standard
specification language UML.
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