
Runtime Infrastructure Optimisation
in Cloud IaaS Structures

Kleopatra Chatziprimou
Department of Informatics
King’s College London, UK

Email: kleopatra.chatziprimou@kcl.ac.uk

Kevin Lano
Department of Informatics

King’s College London, UK
Email: kevin.lano@kcl.ac.uk

Steffen Zschaler
Department of Informatics

King’s College London, UK
Email: szschaler@acm.org

Abstract—The requirement for elasticity involves the ability
of cloud datacenters to add or remove resources at a fine grain
and with a lead time of seconds, closely matching resources to the
actual demand conditions. Elasticity techniques can assist cloud
stakeholders in regards to: (i) alleviating datacenter capital and
operating costs, (ii) keeping cloud services continuously available,
(iii) supporting market flexibility. To date, most infrastructure
scaling methodologies can provide resource reconfiguration deci-
sions to maintain quality properties under environment changes.
However, issues related to the timeliness of reconfiguration
decisions under dynamic changes are not adequately addressed.
In this paper, we describe the PhD motivation, research questions
and methodology towards developing cloud infrastructure and
hosted services QoS optimisations under environment uncertain-
ties.

I. INTRODUCTION

The cloud paradigm is shifting computing from the tradi-
tional overprovisioned infrastructure model, to a model that
treats software and hardware as rented commodities. Com-
puting resources (e.g., remote storage) accessed via APIs, are
provided by a cloud infrastructure provider (IP) to a client.
Often a client is a cloud service provider (SP), i.e., a third
party company who uses the computing facilities to provide a
service to their end users [1].

Cloud services execute in virtual machines (VMs), which
are hosted in physical machines (PMs) and located in geo-
graphically distributed datacenters. The allocation of services
to VMs and VMs to PMs forms an infrastructure config-
uration. The precise characteristics of a configuration, are
based on stakeholders (i.e., IP, SP) requirements and may have
to combine software (e.g., performance, reliability, security)
and business quality attributes (e.g., costs, time-to-market).
We consider a configuration to be optimal when it satisfies
all stakeholders non-functional goals. Often, software quality
attributes conflict: e.g., security versus reliability. In general
improving one quality property can deteriorate another thus
quality properties cannot be improved in isolation. Conse-
quently, configurations that exhibit a good trade-off between
multiple quality criteria must be found.

Full exploration of all possible configuration options is not
feasible for enterprise clouds comprised of thousands of com-
puting nodes. Consider for example the case of a datacenter
comprised of 5 active heterogeneous PMs and 10 VMs hosting
the current services. Although the example is trivial it is not
obvious how to change the configuration to improve perfor-
mance in case of e.g., a load spike. The infrastructure architect

might consider rebalancing the CPU and RAM capabilities of
the VMs to increase the system’s processing power. Assuming
9 CPU size ranks and 8 RAM size ranks available to each VM,
there are 10 ∗ 8 ∗ 9 = 720 VM configuration possibilities. The
architect might also consider switching on 2 more PMs and
rebalance the 10 VMs to the 7 now active PMs, resulting to
710 = 282475249 additional configuration options. Assuming
that evaluation of each configuration candidate takes 1 second,
full exploration of the design space will take ∼ 9 years. The
design space of this trivial example is overwhelmingly large
to be neither manually nor fully explored.

Collecting good-enough candidates at reasonable time of-
ten suffices to solve architectural decision problems [2]. Still,
early considerations of architectural trade-offs alone could not
satisfy the whole system life-cycle, as cloud environments are
highly volatile. For example the infrastructure usage will vary
according to workload fluctuations. The deregulated energy
market enables competitive energy pricing contracts, therefore
energy price variations may also appear during datacenter
operation.

Such changes affect the underlying optimisation problem
instance or constraints and thus, the optimum of the problem
might change as well. For example in a workload spike,
it is critical to find configurations that activate an optimal
number of servers to support the increased load achieving
moderate increase of operating costs. When the demand de-
creases, it is critical to search for configurations that deactivate
idle resources to save operating costs, without compromising
performance. Therefore, to ensure satisfactory quality under
changing conditions, dynamic management of the infrastruc-
ture via runtime adaptations is critical.

The inherent trade-offs between optimisation objectives
and the cost of adaptation itself makes runtime optimisation
decisions complex. Solving optimisation problems at runtime,
is challenging due to the time and computational costs needed
to calculate the solutions. When the environment is changing it
may be better to make a suboptimal decision fast, rather than
invest time searching for design alternatives that may never
recoup this investment. A long search for alternatives will keep
the datacenter in the current configuration state, which is not
necessarily close to optimal after the environment changed.
This means that the stakeholders might risk revenue losses,
while the optimisation process wastes additional computational
resources. Overall it is critical that the optimisation process
will not consume more resources than it can save.



Fig. 1: Configuration Example.

The goal of our research is to determine how to auto-
matically adapt cloud infrastructure configurations to dynamic
changes at runtime. Our focus in this problem is achieving a
useful balance between the feasible optimality of architecture
candidates and timeliness of the optimisation procedure. Over-
all, our methodology proposes the integration of (i) formal
models to describe the infrastructure architecture and how
the architecture can change to affect quality attributes (ii)
evolutionary optimization techniques and (iii) data-driven ap-
proximations, to estimate the quality of a configuration based
on history observations. The rest of this paper is organized as
follows. Section II presents our motivating scenario. Section
III summarizes the state-of-the-art. Discussion on our research
questions is given in Section IV while Section V details our
methodology. Conclusions are presented in Section VI.

II. MOTIVATION

To quickly convey our motivating concepts, we provide
a simple use case example in the following. Consider an
IP with geographically distributed datacenters. Each cloud is
comprised of M PMs and N VMs. An SP will rent part of
the infrastructure to provide web-hosting services (i.e., on-line
newspaper) to its clients. Web hosting services are considered
3-tier (i.e., web, application and database). Replicas of each
tier are hosted in each VM. The workload of the services is
represented by the mean request rates for each tier. Let us
further consider a Service level Agreement (SLA) which sets
the average service response time threshold at 2 seconds.

To indicate the conflicts in priorities among stakeholders,
we assume here that the best interest of the SP is maximum
services performance measured as minimum mean response
time. Therefore SP anticipates unlimited infrastructure scaling
to support every possible incoming workload. On the other
hand, the more workload is served, the more infrastructure
resources must be activated to host it. Thus operating costs
as energy consumption are increased. While the IP must be
able to provide sufficient infrastructure resources, his budget
is constrained. The challenge is to identify the best config-
uration options, which optimally balance trade-offs between
performance and available budget. Figure 1 shows the selected
configuration, where part of the infrastructure serves the re-
quested service instances while another part is deactivated to
regulate energy consumption.

Changes in the environment will affect the underlying
optimisation problem’s parameters and therefore the initially
deployed best trade-off architecture. In case of a load surge
in service instance i, new hardware servers must be activated
to manage the increased load. A new supplier contract might
result to reduced energy price. The infrastructure must re-
act exploiting the possibility to activate more servers within
budget to further improve performance. In any case, the new
configuration has to be decided and deployed within the
SLA threshold of 2 seconds. Otherwise, IP may risk revenue
losses due to SLA violation penalties. Towards addressing
these concerns, we must consider an automated and adaptive
optimisation approach to enable fast convergence to good-
quality design alternatives.

III. RELATED WORK

In current literature the challenge of managing transient
adaptation costs has been partially considered. A sophisti-
cated approach is developed by in [3] that considers the
time costs of adaptation actions. Yet, assumptions are made
about static datacenter structures over time, which simplify
the problem but limit the applicability of the solution in real
world environments, which are highly dynamic. Similar static
assumptions of e.g. a-priori known migration cost [4] fail to
apply to dynamic systems as migration costs are dependent on
memory use [5], which is dependent on time-varying work-
load requirements therefore cannot be static during datacenter
operation. Other approaches targeted for online optimisation,
use greedy heuristics and very few degrees of freedom. The
corresponding search problem has small size and may be fast to
solve [6]. However, the optimisation outputs can be low quality
approximations of the true optima. The requirement for fast
adaptation must not vastly degrade the quality of architecture
candidates as they are related with financial risks.

In the literature, the extensive use of bin packing heuristics
provides best-effort actions but neglect in depth considerations
of conflicts between optimisation objectives [7]. Adaptation
actions are applied based on greedy rules that do not allow
simultaneous optimisation of multiple conflicting criteria and
may cause traps to local optima. Additionally, greedy solutions
can lead to instability inside the datacenter and oscillations be-
tween states. For example in [8] greedily switching on servers
to host new services can lead to violations of allowed energy
consumption. In a similar fashion, servers will be greedily
switched off, possibly triggering performance degradation of
hosted services, that will call again for activating new servers
etc.

Another challenging direction is the requirement for au-
tomation during the search for optimal architecture candidates.
A number of approaches require formulation of constraints
to guarantee desired properties of the datacenter entities [9].
However, such constraints must be manually tuned when
changes in the environment occur. Manual tasks are usually
error-prone and time consuming therefore not suitable for
enterprise clouds.

Uniform exploration of the possible architecture candidate
space is not always assured as a number of approaches consider
only a limited number of degrees of freedom towards tuning
the quality of the current configuration [6]. For example if only



VM migrations are supported, energy-saving actions such as
switching off unused VMs cannot be explored. Furthermore,
VM migrations are computationally expensive and depending
on the scenario cheaper adaptation actions could be also
appropriate. On the other hand, exhaustive exploration of all
possible configuration solutions within a prediction horizon as
presented in [10] can be very time-consuming, therefore not
suitable at runtime. Furthermore, the overwhelming size of the
design space may restrict the applicability of the approach to
trivial systems (e.g., authors in [10] experiment on a testbed
of only 6 servers).

Finally, a number of approaches abstract useful details from
the problem domain e.g., the hosted services behaviour. For
example authors in [11] consider incoming workload in terms
of requirements to host a particular number of VMs to PMs
considering the problem a variation of bin-packing. While such
approaches simplify the problem model, a knowledge about
the services behaviour (i.e., arrival rates, component structure)
may offer more precise management.

IV. RESEARCH QUESTIONS AND CHALLENGES

The goal of this PhD is to develop an automated frame-
work for runtime infrastructure optimisation in dynamic cloud
environments. The optimisation procedure considers multiple
quality criteria as well as the cost of the adaptation itself,
in terms of time needed to identify changed optima. The
following are major identified research questions.

RQ1: How to Automatically Improve Configurations ?
Automation support is necessary as it can improve the speed
and cost of the search of configuration candidates. Configura-
tions must not change arbitrarily during optimisation. To the
contrary each configuration must adhere to predefined design
constraints. The goal of an automated improvement process is
to always guarantee meaningful design alternatives, eliminat-
ing manual sanity checks. To this end, a formalisation of the
cloud infrastructure core structures and degrees of freedom is
required to enforce design constraints and specify which valid
changes may be implemented towards tuning the architecture
quality attributes without affecting the functionality of the
system.

RQ2: How to Search for Good-Quality Configurations ?
In the space of all possible solutions, architectures that exhibit
a good trade-off between multiple quality criteria must be
tracked. As the design space to be explored can be vast, full
exploration of all possible configurations is not realistic. At
the same time, finding the exact globally-optimal solutions
is not necessarily required; a good approximation found in
reasonable time often suffices to solve a given design decision
problem. To this end, we propose the use of population-
based evolutionary meta-heuristic techniques to encode the
challenge of optimising architectures as a search problem.
They search for Pareto-optimal design candidates i.e., can-
didates that are superior to any other candidates in at least
one quality criterion. The application of evolutionary meta-
heuristics seems natural fit for our problem because they (i)
treat the function to be optimised as a black box (ii) are
simple, as one can make progress with only two ingredients: a
choice for representation of the problem and a definition of the
fitness function capturing the quality criteria to be optimised

(iii) are robust and with appropriate parameter tuning their
performance comfortably outperforms purely random search
(iv) can demonstrate scalability though parallel execution of
candidate fitness computations (v) are any-time algorithms
(i.e., may trade deliberation time for quality of results) and
therefore are appropriate for time critical domains.

RQ3: How to Accelerate the Search Process ?
To estimate the fitness of configuration candidates against the
required quality criteria a full simulation or physical experi-
ment is required, because of lack of an analytic mathematical
formula to calculate the candidates quality. Therefore, the num-
ber of calls to the fitness function must be limited because each
evaluation can be very time consuming and computationally
expensive. In our use case for example, during the quality
evaluation phase, the simulation candidates to measure their
fitness is in the order of hours while the runtime SLAs are in
the order of seconds. Towards reducing the cost of evaluations,
fitness functions can be approximated based on data generated
from experiments or simulations. These approximate models
are orders of magnitude cheaper to run than the full analysis
[12]. The approximated and original fitness model must be
used together to achieve a balance between accuracy of the
approximation and cost of calling the original fitness function
[12]. Strategies towards fitness approximations are based on
machine learning and may be classified into the following
categories. (i) Data-driven approximations/ Surrogates: Pro-
vide predictions of the fitness using a training set of evaluated
points. (ii) Fitness imitation: This type of approximation aims
at saving function evaluations by estimating a candidate’s
fitness from similar candidates.

Popular techniques towards fitness imitation are clustering,
and instance based learning. Clustering techniques divide can-
didates into several groups according to their similarity. Then
only an individual represents the fitness of each cluster. A lim-
itation of this technique is the the number of clusters must be
known in advance. Furthermore the “curse of dimensionality”
effects on a fuzzy notion of similarity when multiple variables
are considered. Instance based learning methodologies suggest
the inheritance of fitness among candidates. These approxima-
tion methods seem rather coarse grained and have been found
not to work well for mutli-objective problems [12].

In this study, we will focus on surrogates, as the fit-
ness function can be gradually learned and therefore they
can provide a finer grained model of the objective space.
Popular techniques under this category are neural networks
and statistical learning. Neural networks can be trained to
approximate every function, however the resulting weights
of the trained network are difficult to interpret while finding
an appropriate network topology/size is laborious. The most
promising technique to devise surrogate models in evolutionary
computation, appears to be statistical learning. The challenge
in devising such models is fitting statistical functions to
observed distributions of the fitness behaviour. In the category
of statistical learning, the use of Gaussian Processes (GPs) is
prominent [13]. GPs specify a probabilistic model, constructed
such that the likelihood of the function value given a set of
observed data is maximized. We gravitate towards the use of
GPs for online fitness predictions because they are simple to
construct, provide a measure of uncertainty for the predictions
and support online addition of observed data without changing



Fig. 2: Overall Methodology.

the model’s parameters.

V. METHODOLOGY

Figure 5 shows our overall methodology. Each step is
analysed in the following.

Assumptions
A prerequisite for our approach is that a software cloud
monitoring tool exists to provide notifications of changes
in the cloud environment and therefore triggers to call the
optimisation framework. Furthermore, when new data points
become available to the surrogate model (see Task 4) we will
assume that the general form of the function described by the
existing dataset is approximately the same as the one described
by the expanded dataset.

Task 1. Domain Model
To solve RQ1 we have proposed a meta-model that formalises
the achievable search space of all possible configurations [14].
The meta-model comprises information regarding the structure
of a cloud datacenter configuration as well as its degrees of
freedom. Conformance to the meta-model ensures that adap-
tations of architectures will lead to meaningful alternatives.
In the following, we present the degrees of freedom we have
identified so far and which can be exploited by our approach.

• PM Activate: The used hardware has an effect on
many quality attributes. More active servers can make
the datacenter perform better.

• PM Deactivate: On the other hand, there is a trade-off
between quality attributes as speed, reliability and cost
of the datacenter. Deactivation of low utilised servers
provide a way to negotiate such trade-offs.

• VM Resize: The capabilities of a VM (e.g., virtual
memory/CPU) can be resized. For example a virtual
machine may receive a bigger CPU slice from its host
to enforce its processing power.

• VM Create: New VMs can be instantiated to exploit
more processing capacity and increase parallelism.

• VM Destroy: A VM may be destroyed to release its
reserved resources towards saving costs.

• Live Migration: VM migration may be used to allevi-
ate resource contention issues from overloaded servers
or redistribute the VMs to release idle resources.

The different characteristics (e.g, severity, frequency) of
possible environment changes leads us to believe that sup-
porting adaptation actions of different costs and effects on the
architecture is useful. For example a cheaper but moderate VM
Resize can apply to rapid workload changes. An expensive
but more aggressive VM migration could be more suitable
in the case of e.g., a changed technical environment where
new servers have become available and a new configuration
is needed to cost-optimally balance the execution of services
between the old and new infrastructure.

Having a formal description of the architecture design
space (i.e., set of all feasible configurations), improved so-
lutions can be automatically explored: First, stakeholders may
define constraints for the design space. Second, the possible
degrees of freedom of the infrastructure are identified. The
third step runs an optimisation tool that reviews and varies the
architecture along the most suitable degrees of freedom. The
output is a set of improved solutions.

Task 2. Cloud Datacenter Simulation
We simulate configurations using CloudSim1 to represent our
design space. Our current experimental setting comprises 150
PMs (HP ProLiant ML110 G42 and G53) and 150 VMs.
To simulate the web workload of our use case, requests for
resources arrive per tier (application, business and database)
according to a Poisson process, while requests size follows a
Pareto distribution based on [15]. We vary the arrival rate with
a step of 5 to generate {5 − 100} requests per second. Each
experiment runs for the time period {t0, tfinish}, where t0 = 0
and tfinish is the time needed for the datacenter to serve the
incoming load. We repeat each experiment for 10 times and
collect the average values. For each arrival rate we calculate
the average (a) service’s response time (b) datacenter energy
consumption, and (c) datacenter CPU utilisation ratio.

Figure 3a shows that total energy consumption of the
datacenter increases with workload. This can be explained
from the CloudSim energy model, which is defined as a
function of PM’s power consumption model (for detail see
footnotes 2 and 3) and CPU utilisation over time. Bigger
workloads cause heavier CPU utilisation and require more
time to complete execution, therefore energy consumption
increases. Similarly, Figure 3b shows that the average service
response time also increases with workload. VMs use a static
resources (i.e, CPU, RAM, bandwidth) slice to execute the
incoming requests. Therefore, as the workload size increases
more requests are queued and response times increase. Finally,
Figure 3c indicates that the average utilisation ratio of the
datacenter remains ∼ 20% of its total capacity regardless the
workload size. Due to lack of infrastructure flexibility VMs and
PMs cannot rebalance their capabilities to scale up or down to
the actual demand.

1http://www.cloudbus.org/cloudsim/
2http://www.spec.org/power ssj2008/results/res2011q1/power

ssj2008-20110127-00342.html
3http://www.spec.org/power ssj2008/results/res2011q1/power

ssj2008-20110124-00339.html



(a) Energy Consumption (b) Response Time

(c) Utilisation Rate

Fig. 3: Experimental results for the three metrics of interest.

Overall, our initial simulation experiments depict an over-
provisioned datacenter where energy costs and response times
sharply increase with load. Resources usage does not follow
the actual demand; some servers are over-utilised while others
remain idle wasting energy without improving performance.
With our proposed methodology we envision to contribute to
this picture by achieving runtime optimisation actions that fol-
low workload variations towards limiting energy consumption
within predefined cost thresholds and honouring runtime SLAs
regardless the workload size.

Task 3. Multi-Objective Optimisation Problem
Let c be an architecture configuration in the space of all
possible configurations D. Let q be a quality criterion and
a fitness function fq(c) that denotes the quality of c ∈ D for
the criterion q. The optimisation problem can be formulated
as follows for a set of quality criteria {q1, ..., qn}

min. [fq1(c), ..., fqn(c)] , c ∈ D (1)

Currently we study the quality criteria of services perfor-
mance measured in average response time (seconds) and total
datacenter energy consumption (Watt-hours). Figure 4 shows
the optimisation process model of our method. The method
presented is exemplary for our current realisation with NSGA-
II evolutionary algorithm [16] as implemented in MOEA
framework4.

The optimisation process takes as input an initial con-
figuration and generates a random set of candidates. In the

4http://www.moeaframework.org/

Fig. 4: Optimisation Algorithm.

second step, evolutionary algorithms iteratively search for
better solutions, by applying the main steps of (a) Reproduc-
tion: “Mutation” and “crossover” operators modify the set of
architecture candidates to tune their quality. With mutation
one design option is varied along the formalised degrees
of freedom. With crossover parts of two design options are
merged into a new one. (b) Evaluation: The quality of each
candidate is assessed against the achieved average response
time and energy consumption. Here, we apply a full simulation
of each perspective candidate to gather estimations for energy
consumption and average services response time. (c) Selection:
The most promising individuals are selected to form a new
generation of candidates. Selection criteria include both a mea-
sure of non-domination indicating how close is the candidate
to the true optimum and a measure of diversity indicating how
uniform is the distribution of the solutions in the objective
space. Over several iterations, the population will converge
towards Pareto-optimal solutions, probably superior than the
initial candidate.

Task 4. Surrogate Model
This task will devise a Gaussian processes (GP) surrogate
model to learn online the fitness function of the optimisation
process based on a set of sampled evaluated data points. GP
modelling relates each observed value y with the unknown
underlying fitness function f(x) through a Gaussian noise
model as follows:

y = f(x) +N (0, σ2) (2)

Let us assume that evaluating f at M data points XM =
[X1, .., XM ] in the decision space, has yielded the fitness
function values YM = [Y1, .., YM ]. The modelling task is to
predict the unknown function value YM+1 at a new data point
XM+1 given by the conditional probability p(YM+1|XM+1).
The intended contribution of this step is to increase the speed
of the optimisation convergence because we replace during
evaluation, the highly time-consuming step of full candidates
simulation with an estimation of conditional probability.

As shown in Figure 5, an environment change (e.g., work-
load spike) in the cloud datacenter will trigger the optimiser, to
renegotiate the new best trade-off infrastructure architectures.
Initially the optimiser will operate using the expensive fitness



Fig. 5: Surrogate-based Optimisation.

model in order to gather an initial set of training data points.
This dataset will calibrate our surrogate model. New calls
to the optimiser will be able to use the surrogate model
after its initial calibration. For each prediction of the fitness
function values YM+i the surrogate model provides an error
bar captured in the form of the standard deviation σ.

The quantity of the sampled training data is inverse anal-
ogous to the degree of uncertainty in the model’s predictions.
Based on this observation, a new call to the expensive fitness
function can expand the initial training dataset towards reduc-
ing the error bar of each fitness prediction. A major challenge
in this task is to establish a useful sampling methodology to
minimise the risks of under-fitting and over-fitting the model.
In other words, we must achieve a balance between calls to
the expensive fitness function and to the approximate model,
to ensure that our GP accesses a uniformly distributed set of
training data that balances exploitation of already observed
samples and exploration of so far unobserved values of the
objective space.

Task 5. Validation
Our last target is to examine the efficiency of our proposed ap-
proach towards providing real-time infrastructure optimisations
considering a set of configurable quality criteria {q1, ..., qn}
by simulation-based experiments. To this end, we will first
compare the expensive optimisation procedure described in
Task 2 with random search, to ensure that a possible success of
the algorithm is not the result of an easy problem [17]. Then we
will investigate the accuracy of the surrogate-based optimisa-
tion compared to the output of the expensive optimisation. The
stochastic nature of evolutionary algorithms make comparisons
between them challenging. If we apply the same algorithm
several times to the same problem, each time a different
Pareto set of solutions may be returned. Randomized algo-
rithms can experience complex and high variance probability
distributions. Therefore, to obtain reliable conclusions about
the performance of the stochastic algorithms, we must use
more powerful statistical testing methodologies (i.e., Mann-
Whitney U) to ensure that there is enough empirical evidence
to claim difference between the compared algorithms.

VI. CONCLUSION

Real time infrastructure adaptations is a key factor towards
achieving elasticity in cloud datacenter structures. This PhD

proposes a methodology for automated, runtime infrastructure
optimisations in dynamic cloud environments. We expect our
study to contribute to the academic community by providing
analysis of dynamic cloud datacenter architectures and defining
a compact methodology to negotiate at runtime inherent con-
figuration design trade-offs such as performance versus cost
and overhead of adaptations versus their benefit.

ACKNOWLEDGEMENT

This work has been supported by the European FP7 Marie
Curie Initial Training Network “RELATE” (Grant Agreement
No. 264840).

REFERENCES

[1] M. Harman, K. Lakhotia, J. Singer, D. White, and Y. Shin, “Cloud
engineering is search based software engineering too,” In Journal of
Systems and Software, 2013.

[2] H. A. Simon, “Invariants of Human Behavior,” Autobiographies, 2009.
[3] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu,

“Mistral: Dynamically Managing Power, Performance, and Adaptation
Cost in Cloud Infrastructures,” In International Conference on Dis-
tributed Computing Systems, 2010.

[4] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and migration
cost aware application placement in virtualized systems,” in Proceedings
International Conference on Middleware, 2008.

[5] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,” in NSDI
Proceedings, 2005.

[6] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application Performance
Management in Virtualized Server Environments,” in the Network
Operations and Management Symposium, 2006.

[7] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud: An Energy-
Saving Application Live Placement Approach for Cloud Computing
Environments,” in Proceedings of International Conference on Cloud
Computing, 2009.

[8] N. Huber, F. Brosig, and S. Kounev, “Model-based self-adaptive
resource allocation in virtualized environments,” in Proceedings of
Software Engineering for Adaptive and Self-Managing Systems, 2011.

[9] B. Addis, D. Ardagna, B. Panicucci, and L. Zhang, “Autonomic
Management of Cloud Service Centers with Availability Guarantees,”
in Proceedings of International Conference on Cloud Computing, 2010.

[10] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing envi-
ronments via lookahead control,” Cluster Computing, 2009.

[11] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
“Entropy: a consolidation manager for clusters,” in In the Proceedings
of international conference on Virtual execution environments, 2009.

[12] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments-a survey,” Transactions on Evolutionary Computation,
2005.

[13] D. Buche, N. N. Schraudolph, and P. Koumoutsakos, “Accelerating Evo-
lutionary Algorithms with Gaussian Process Fitness Function Models,”
In Transactions on Systems, Man and Cybernetics, 2004.

[14] K. Chatziprimou, K. Lano, and S. Zschaler, “Towards A Meta-Model
of the Cloud Computing Resource Landscape,” 2013.

[15] P. Barford and M. Crovella, “Generating representative Web workloads
for network and server performance evaluation,” in Proceedings of ACM
Sigmetrics, 1998.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast Elitist
Multi-Objective Genetic Algorithm: NSGA-II,” In Transactions on
Evolutionary Computation, 2000.

[17] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
International Conference on Software Engineering, 2011.


