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Abstract
Simulation is a key tool for researching complex system be-
haviour. Agent-based simulation has been applied across do-
mains, such as biology, health, economics and urban sciences.
However, engineering robust, efficient, maintainable, and
reliable agent-based simulations is challenging. We present a
vision for engineering agent simulations comprising a family
of domain-specific modelling languages (DSMLs) that inte-
grates core software engineering, validation and simulation
experimentation. We relate the vision to examples of prin-
cipled simulation, to show how the DSMLs would improve
robustness, efficiency, and maintainability of simulations.
Focusing on how to demonstrate the fitness for purpose of
a simulator, the envisaged approach supports bi-directional
transparency and traceability between the original domain
understanding to the implementation, interpretation of re-
sults and evaluation of hypotheses.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Computing methodologies
→ Agent / discrete models; • Applied computing →
Computational biology; Health informatics.

Keywords: agent-based simulation, domain-specific mod-
elling languages, CoSMoS
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1 Introduction
Complexity is inherent to life; most areas of science and pol-
icy benefit from an understanding of complex systems. It is
a feature of complexity that instrumenting a system in order
to experiment on it directly disrupts the natural patterns
of interaction [5, 7, 14]: experimental results are at best ap-
proximate. There are also significant ethical problems with
experimentation: it is ethically undesirable to use animal
models, common in medical and biological research, because
the experimental set-up disrupts the systems under study
and harms (often kills) the experimental subjects. Further-
more, experimentation on live, or recently dead, organisms is
not strictly repeatable or reproducible, as the organism and
the environment are unique and complex. In a similar way,
experimenting on human and engineered complex systems is
disruptive and potentially unethical: we cannot experiment
safely on economic and social systems (though politicians
like to try), or on complex safety-critical systems such as
aircraft or chemical/nuclear plant controllers.
Simulation offers a computational alternative to live ex-

periments. If a complex system behaviour can be suitably
modelled, then repeatable and reproducible experiments can
be run, limited only by computational resources. For a simu-
lation to be trusted, it must be demonstrable that simulation
observations are the outcome of appropriately captured be-
haviours, not experiment artefacts or coding errors.
An example of the trust problem can be seen in recent

high-profile agent-based and mathematical simulations sup-
porting research on the COVID-19 pandemic. The simulation
designs and code have attracted substantial criticism from
the software-engineering community, not least for the lack
of recorded rationale (notably parameter value selection).
Scientists have declared their confidence that their simula-
tions are sufficient analogues of reality, but this does not
amount to demonstrable fitness for purpose, and makes it
difficult to challenge and improve the models. Furthermore,
the simulations are hard to develop further, reliant on the
knowledge and skill of the original developers.

Principled simulation: the CoSMoS process. There are
partial solutions to simulation engineering (cf. Sect. 5), but
the only approach that addresses the whole simulation pro-
cess from domain exploration and identifying an appropriate
simulation focus, to interpretation of results, is the CoSMoS
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Process [21]. This is the context for our vision of simulation
engineering. CoSMoS presents guidelines and patterns for
development and use of fit-for-purpose scientific simulations,
and proposes engineering approaches to support interaction
between domain experts and simulation engineers.
No techniques or work flows are mandated by CoSMoS,

but in projects that have used the CoSMoS approach the
modelling has been informal—often using ad hoc variants
of UML. As a result, whilst developers have used program-
ming environments, none has taken up CoSMoS’s sugges-
tion of model-driven engineering. Our vision is of well-
founded, tool-supported notations, supporting development
techniques that encompass domain and scope exploration,
software design and implementation, as well as experimental
design and the recording of rationale. The framework exists
within CoSMoS; our vision seeks to underpin CoSMoS with
a family of domain specific modelling languages (DSMLs).
Crucially, our envisaged family of DSMLs includes lan-

guages for expressing expected behaviours and fit-for-pur-
pose arguments, integrated at a fundamental level with ex-
ecutable simulations, as well as languages for specifying
appropriate simulation experiments and experimental pro-
tocols, with appropriate validation and sensitivity analysis
to allow robust conclusions to be drawn. Based on our expe-
rience, the vision is expressed for agent-based simulations,
but we believe that it would generalise to other forms of
simulations.
In the remainder of this paper, we first present a moti-

vating example and highlight some challenges (Sect. 2). Sec-
tion 3 presents an overview of our vision for a family of
DSMLs for agent-based simulation. In Sect. 4 we provide a
little more detail of how the vision would apply in reality.
Finally, we discuss other efforts for systematic engineering
of agent-based simulations in Sect. 5.

2 Motivating Example
Themotivating example is hypothetical1 but based on simula-
tor development to support laboratory work at York Compu-
tational Immunology Laboratory on (a) formation of Peyer’s
Patch cell clusters [1, 3]; and (b) granuloma formation in
visceral Lieshmaniasis [16]. For each project, an experienced
laboratory team worked with CoSMoS team members from
engineering disciplines. Four PhDs (and some other student
projects), investigated different hypotheses; models and code
were developed, exchanged, extended, and abandoned. The
series of simulator developments, following the CoSMoS
principles, were implemented on Java Mason, Repast and
Flame agent platforms [9, 13, 16, 22].
The PPSim (Peyer’s Patch Simulator) was developed to

investigate laboratory research hypotheses relating to cell
cluster development in a neonatal mouse gut. The simulator

1In reality, the link between projects and simulators is not so simple.

development involved modelling the domain (cells, chemi-
cals and interactions), validating models with the laboratory
scientists, software modelling, and implementation on an
agent-based platform, developing bespoke code for com-
ponent behaviours. The rationale for the development is
carefully documented, with argumentation diagrams and
extensive text recording the belief in the fitness for purpose
of the simulator. Experimentation in vivo and in silico estab-
lished new understanding of the triggers to cluster formation
(see [1–3]). The collaboration lasted some 6 years. The simu-
lator exists as a downloadable application2, with associated
guidance and scripts for rerunning existing experiments, in-
cluding full replication of calibration and sensitivity analysis.

The software engineer (SE1) then left. The teamnowwants
to study cluster distribution, and also to use simulation to
explore other cell cluster formation. This needs modification
of simulation components and behaviours. The team has the
ability to modify the domain-modelling for the new hypothe-
ses, but not the expertise to modify the implementation.
A new software engineer (SE2) joins the team. To under-

stand the design, implementation, rationale and fitness-for-
purpose arguments, SE2 needs to recreate all SE1’s knowl-
edge acquisition. Technical problems arise: missing version
histories, historical incompatibility of open-source platforms
or code. Inevitably, the simulator documentation does not
provide all the detail needed to understand the code: it is
clear what the components are, and how they are intended
to be implemented, but not how each agent and interaction
is coded on the Java Mason platform.
Subsequently, another project wants to adapt the sim-

ulation to explore a granuloma formation hypothesis. SE2
starts to map out how to replace PPSim cells with granuloma-
forming cells. There are 1:1 mappings between the implicated
cell types, but some interaction behaviour and timing pa-
rameters (and the cell environment) are not identical. SE2
has solved some of the technical issues, but the code, which
comprises the platform representation of agents along with
the bespoke coding of interaction triggers and behaviours,
bespoke agent environment, and bespoke visualisations and
data capture—created by two independent developers with
different coding styles—defies systematic modification.

Key challenges arising in this example include:
– The lack of formal mapping between designs and code

makes traceability subjective.When designmodels change,
code cannot be simply regenerated.

– The agent platform’s agent architecture distributes code
for an agent across classes, making it difficult to relate one
cell agent to a coherent block of code. This is exacerbated
by good programming practices such as creating utility
functions for recurrent code and use of domain-specific

2See kennedy.ox.ac.uk/coles/PPSim
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agent hierarchies (i.e., a specific cell is a subclass of mobile
cell, which is a subclass of cell).

– The platform code tangles [12] visualisation, data gather-
ing, and computation with agent encodings, meaning that
computation cannot be easily modified separately.

– Lack of clarity on how experimental activities are sup-
ported in the code. The documentation describes experi-
mental design in detail; experiments can be re-run exactly;
but encoding new experiments or parameterisation re-
quires deep understanding of the code.

In short, there is no efficient way to query the domain mod-
elling, the simulation or experiment design, the rationale, or
the code base: to find the answer to even a simple question,
the enquirer needs to read all the documentation, understand
diagrams and code for the simulator and experimentation.

3 Overview of Vision
Our vision builds on the CoSMoS Process [21], which pro-
poses three products (referred to, unhelpfully, as models):
1. A domain model comprises representations of the relevant

aspects of the domain, expressing the shared understanding
of the scientists and software developers. Whilst capturing
what is considered relevant, the domain model is incom-
plete, because some relevant information about a complex
system is always unknown or of unknown accuracy. A
domain model typically includes representation of hypoth-
esised mechanisms and known observations that need to
be recognisable in the eventual simulator.

2. A platform model comprises the software design and ra-
tionale for the simulator, representing how the domain-
model concepts map to computational constructs (e.g.,
cells to classes). The platform model is used to create and
calibrate the simulator. Whilst there is tool support for
some techniques to compare and analyse results, to date,
all development has used a manual work flow.

3. Whenever a simulation is run, it produces simulation re-
sults. These are referred to as a results model to avoid the
misconception that they tell us something about the sim-
ulated reality without interpretation by domain experts.
Because CoSMoS does not mandate a form or level of for-

mality for its products, each project selects its own languages
and techniques. Most existing work uses adaptations of soft-
ware engineering modelling languages, along with some
bespoke models, and various forms of text (for assumptions,
justifications, rationale and supporting material). To date,
all CoSMoS projects have used manual code development.
This is a pragmatic approach, but, as the motivating example
shows (Sect. 2), manual development inhibits modification,
reuse and the reliability of the overall scientific argument.
Manually written experiments and scripts are difficult to ver-
ify, and there is limited traceabilty from domain concepts, via
code, through experimental design and execution to results.

Our vision of a family of DSMLs to support simulation en-
gineering, Fig. 1, would enable incremental transformation,
addressing many of the automation challenges.

Our DSML family centres on a fitness-for-purpose DSML
that will allow fitness-for-purpose arguments to be captured
explicitly and in an analysable form (cf. Fig. 1, top two rect-
angles). We believe that the demonstration of fitness for
purpose is the key to trustworthy and scientifically robust
computational modelling. Fitness-for-purpose arguments
demonstrate that the domain has been modelled appropri-
ately for the stated purpose (justifying modelling decisions
based on scientific literature, real-world experiments, etc.),
that the model adequately reflects reality (by showing that it
can reproduce results seen in real-world data), and that the
simulation experiments are appropriate to establish conclu-
sions (including, but not limited to, showing that the results
establish hypotheses with appropriate statistical rigour). The
fitness-for-purpose argument must include explicit hypothe-
ses (e.g., about expected behaviours) and explicit modelling
of the simulation experiments to exercise the hypotheses.
Fitness-for-purpose analysis cannot be fully automated.

However, an explicit fitness-for-purpose model can maintain
links between inputs to, and steps of, a fitness-for-purpose
argument, enabling systematic inspection, including by re-
searchers outside the study team. We intend to adapt the
existing Goal Structuring Notation (GSN) definition3 by in-
cluding explicit, computer-processable links to the other
DSML-supported models (and specific versions of these mod-
els) that support development and use of the simulation.
The suite of models (diagrams, text, etc.) expressing the

relevant abstractions of the domain need to be expressed
in a domain-modelling DSML so they are accessible to the
domain expert. This DSMLwill likely be adapted to each new
research context, to allow natural expression of the domain’s
specific concepts. However, we anticipate considerable reuse,
supported by modular language components—for example,
in cellular biology, there are recurrent mechanisms such as
gene-regulation networks or energy minimisation principles,
whilst cell clustering and cell differentiation have significant
generic aspects. A modular approach to language specialisa-
tion also makes it easier to extend models and languages.
To further facilitate reuse and extension, we propose to

develop the domain-modelling DSML atop a generic agent
modelling language providing the basic concepts for agent-
based simulation. The generic language will then be spe-
cialised for each specific simulation platform (e.g., [15, 17]),
enabling automated transformations of generic agent models
into platform-specific simulation models.4

We envisage that simulation experiments are also designed
and modelled via a hierarchy of languages, with a model
3www.goalstructuringnotation.info
4Many generic simulation platforms already come with a platform-specific
simulation-modelling language, often as a library or framework in a general-
purpose language such as Java.
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Figure 1. Overview of the family of DSMLs. Outer rectangles relate to existing CoSMoS products and techniques. The inner
3x3 structure is the proposed DSML family. Reading top-to-bottom, it moves from domain-focused to simulation-focused, via
software engineering modelling. Reading left-to-right, the focus moves from designing, to querying of designs, to results.

querying DSML at the highest abstraction level. Again, such
a language has to be specific to each domain, with the po-
tential for reuse across domains, and the use of templates
for recurring query types. The query DSMLs should sup-
port generation of experiment execution scripts (simulation
experiment models) in a stepwise fashion.
Once simulation experiments have been run, the results

need to be presented to domain experts for interpretation.
This requires translation back from a platform results model
(e.g., a log file of a simulation run) to a domain-specific re-
sults model expressing results in terms of the domain queries
and domain-model concepts, including information about
statistical significance. Again, this is a stepwise translation
via an intermediary agent-based results model. Results mod-
els are referenced from fitness-for-purpose argument models,
ensuring the full end-to-end argument is documented. Thus,
fitness-for-purpose arguments become live models tracking
the current simulation rationale.
Automated generation of executable simulations (simu-

lation platforms in CoSMoS and Fig. 1) enables separation
of concerns: domain experts can focus on expressing their
mental model of the domain, whilst software engineers can
focus on simulation implementation. Further benefits arising
from our vision of a family of DSMLs include the following:
– Automated generation means simulations consistently im-

plement the domain model using well-defined transforma-
tions that can be inspected by domain experts and software

engineers when maintaining the fitness-for-purpose argu-
ment. Because fitness-for-purpose is modelled explicitly,
the specific implementation of the transformation can be
directly referenced from a fitness-for-purpose argument,
enabling complete traceability. This is impossible where
simulations are manually developed from domain models.

– In generating simulation experiment models, the auto-
mated generator can take into consideration expected
boundaries for statistical significance and choose appro-
priate sensitivity analyses for robustness checking—for
example by building on tools such as MC2MABS [10] or
Spartan [4]. Again, the generation rules are explicit arte-
facts that can be referenced from the fitness-for-purpose
argument and inspected as needed.

– Building a hierarchy of DSMLs with stepwise translation
improves reuse: languages closer to the simulation plat-
form are more likely to be reusable for different types
of simulations in different domains. Simulation has been
studied for a long time, so simulation platforms are largely
stable and do not change substantially. Equally, many do-
main problems can be simulated using the same funda-
mental agent-based concepts, but there are problems that
will require different concepts to be efficiently simulated.
While some aspects of domain models may be reusable
across different specific domains (e.g., gene regulation net-
work models), potentially allowing libraries of reusable

19



A Family of Languages for Trustworthy Agent-Based Simulation SLE ’20, November 16–17, 2020, Virtual, USA

2EVHUYDEOHV
���KU��VPDOO�FHOO�
FOXVWHU�URXQG�
/7R�FHOO

5HGXFHG�FHOO�
YHORFLW\�URXQG�
IRUPLQJ�FOXVWHU

�����GD\V�������
ODUJH�FOXVWHUV�
IRUPHG

+\SRWKHVHV ��H[SHFW!!
&HOO�LQWHUDFWLRQ�OHDGV�WR�

DGKHVLRQ�PROHFXOH�XSUHJXODWLRQ

��H[SHFW!!
&HOOV�UHFUXLWHG�WR�

FOXVWHU�E\�FKHPRWD[LV

/7LQ�&HOO

/7L�&HOO
FKHPRNLQH

/7R��9&$0��

$GKHVLRQ�PROHFXOH

/7R��5(7�/LJDQG�

RULJLQDWHV�
ZLWK

LQWHUDFWV�
ZLWK

�DIIHFWV�
PRWLOLW\�RI

�DIIHFWV�
PRWLOLW\�RI

�DIIHFWV�
PRWLOLW\�RI

RULJLQDWHV�ZLWKPHGLDWHG�E\

�XSUHJXODWHV�
H[SUHVVLRQ�RI

LQWHUDFWV�
ZLWK

�XSUHJXODWHV�
H[SUHVVLRQ�RI

�SURPRWHV�
H[SUHVVLRQ�

RI

Figure 2. PPSim expected behaviours [1], a "hypothesis dia-
gram", devised by York Computational Immunology Labs

model components to be created, many aspects of domain
models may require highly domain-specific languages.

– Stepwise transformation in a hierarchy of DSMLs also sim-
plifies inspecting the transformation specification by do-
main experts (togetherwith software engineers). Analysing
individual transformation steps induces lower cognitive
load. Analyses of lower-level transformation steps can be
reused; these do not have to be re-inspected every time.
Thus, a hierarchical argument for fitness-for-purpose can
be constructed, increasing acceptance and trust.

4 Application to Example
We illustrate the modelling and validation activities in sim-
ulation engineering with diagrammatic models from the
PPSim simulator development.

The scope, abstraction level, and purpose of a simulation
can be expressed visually. Figure 2 shows a “hypothesis dia-
gram” developed for PPSim. This roughly corresponds to the
“hypothesis model” in Fig. 1. The top of Fig. 2 shows three
observable phenomena identified by scientists to be recre-
ated in simulation; these would be captured as explicit model
queries in our vision. From the observables, two hypothe-
sised behaviours are identified as the simulation focus. Real-
world concepts implicated in the observed and hypothesised
behaviours are sketched in the lower part of the diagram.
This corresponds to the “domain model” in Fig. 1.

In PPSim, the hypothesis diagram was manually trans-
lated into state diagrams and then into simulation code. We
envision translations to be encoded in automated model
transformations.

The rationale for the PPSim domain model is expressed in
argument diagrams syntactically based on GSN (cf. Fig. 3).
However, so far there is no trace link to software engineer-
ing language concepts—or, indeed, to expected behaviours
models such as that in Fig. 2. Our vision would enable such
links to be captured explicitly.

Our vision of a family of DSMLs would allow us not only
to link references to concepts across diagramming styles,

Claim 1.1.3:
Simulated cell behaviour between 
12 and 13h is representative of 
that observed in ex vivo culture

Strategy 1.1.3.1:
Argue that simulated cell behaviour is 
statistically similar to that ex vivo at 12h

Claim 1.1.3.1.1:
Simulated cells <50µm from a forming 
patch behave as observed ex vivo

Claim 1.1.3.1.2:
Simulated cells >50µm from a forming 
patch behave as observed ex vivo

Mann-Whitney test reveals 
no statistical difference [14]

Mann-Whitney test reveals 
no statistical difference [14]

Definition: representative
cell behaviour observed in simulation 
can be compared to that observed in 
cell culture using statistical techniques

Justifications:
Mann-Whitney 
U-test (don’t 
know if data 
are normally 
distributed)

Figure 3. Extract of argument that the PPSim domain model
is an appropriate representation of the biological domain for
this simulation project, using the CoSMoS variant of Goal
Structuring Notation [2, 21]

but also to create queries: for example, we would like to be
able to query where concepts such as LTo and Cell in one of
these figures appear in other figures—and in code. Finally,
when designing and coding experiments on the simulator,
we would like to be able to (a) use well-defined notations
and (b) link experimental concepts to those used in the full
suite of behaviour and argumentation modelling.

5 Related Work
Effective development of agent-based models and simula-
tions has been studied for some time, and model-driven ap-
proaches have been explored. As a result, some pieces of our
vision have already been studied in various contexts. How-
ever, to the best of our knowledge, a vision addressing the entire
argument an agent-based model and simulation supports, from
the original hypotheses, to the simulation implementation, the
simulation experiments, the calibration and model validation
and to the final conclusions, has yet to be achieved.

So far, model-driven approaches have primarily focused on
developing agent languages and (semi-)automated transfor-
mations into platform models. For example, the INGENIAS
project [6] introduces an agent-modelling language to sup-
port replication by enabling the automated translation to
different simulation platforms. MAIA [8] is a similar, slightly
more recent approach. Here, there is some support for mod-
elling variables of interest and extracting visualisations from
the simulation logs. However, this is not connected to hy-
potheses, simulation experiments, or rationale for developing
the simulation in the first place. The OCOPOMO project [19]
is, to the best of our knowledge, the first approach that par-
tially addresses the need for achieving traceability from the
original domain understanding and research context to the
simulation implementation and final data, by allowing the
inclusion of hyperlinks to the original data. However, models
remain at the agent-language level, thus requiring a mental
shift for domain experts to understand the models and relate
them to their domain expertise. Other examples of model-
driven approaches to agent-based modelling and simulation
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can be found in [11] (possibly the first such approach) and
[18], a more recent approach that provides a more domain-
specific visual syntax for its agent language.

We have emphasised the importance of transparency and
explicit modelling for scientific reproducibility and trust-
worthiness of agent-based simulations. A similar argument
applies to scientific process descriptions and our envisioned
family of languages could form an integral part of a for-
malised description of an experimental process. An alter-
native model-based approach to process description is de-
scribed in [20].

6 Conclusions
We have presented a vision for a family of DSMLs for build-
ing robust and trustworthy agent-based simulations, where
the models can be understood by domain experts and can be
clearly traced to the final simulation and the simulation re-
sults, thus constructing an integrated fitness-for-purpose ar-
gument. Some parts of the vision have already been explored
before. However, the combination of modular DSMLs for
modelling domain knowledge, model queries and simulation
experiments, and computer-analysable fitness-for-purpose
arguments has never been explored. We are currently pro-
totyping such languages in the domains of computational
biology and health improvement science.
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