
Integrating OCL and Model Transformations in Fujaba

Mirko Stölzel1, Steffen Zschaler1, and Leif Geiger2

1Dresden University of Technology, Department of Computer Science
steffen.zschaler@inf.tu-dresden.de

http://st.inf.tu-dresden.de/

2Universiẗat Kassel, Wilhelmsḧoher Allee 73, 34121 Kassel
leif.geiger@uni-kassel.de
http://www.se.eecs.uni-kassel.de/se/

Abstract. This paper discusses the integration of the Dresden OCL Toolkit into
the Fujaba Tool Suite. The integration not only adds OCL support for class dia-
grams but also makes OCL usable in Fujaba’s model transformations. This makes
Fujaba’s model transformations more powerful, completely platform independent
and easier to read for developers who are already familiar with OCL. By using the
code generator of the Dresden Toolkit, we are able to generate executable Java
code from Fujaba’s model transformations including the OCL constraints.

1 Introduction

The Fujaba Tool Suite [1] is a CASE tool which supports Model Driven Development
(MDD) [2]. Within MDD model transformations play an important role. Fujaba offers
special interaction diagrams to specify model transformations. Within these diagrams
most of the transformations are specified graphically. Nevertheless, some expressions
have to be specified textually, like complicated constraints, return values, etc. Since Fu-
jaba generates Java source code from model transformations, these textual statements
have been specified using Java expression. Currently, no syntax-checking is done for
these expressions, so an erroneous expression results in a compile error after code gen-
eration. Newer work adds C++ code generation to Fujaba. Note, that if a developer
wants to use C++ code generation, the constraints have to be written in C++ syntax.

So, it would be helpful to have a platform independent constraint language, which
makes syntax checking possible within Fujaba’s model transformations, adds code com-
pletion and code generation for the different target languages Fujaba offers. This work
suggest to use the Object Constraint Language (OCL) [3] for this task. We have inte-
grated the Dresden OCL Toolkit [4] into the Fujaba Tool Suite. So, we use OCL as
constraint language for Fujaba’s model transformations.

Section 2 briefly describes how model transformations are specified using Fujaba,
Section 3 describes the integration of OCL into Fujaba’s model transformations, Sec-
tion 4 discusses code generation and Section 6 concludes.

2 Story Diagrams – A Short Overview

The Fujaba Tool Suite [1] uses Unified Modelling Language (UML) [5] class diagrams
to model the structure of an application. A previous work [6] has already integrated the
Dresden OCL Toolkit [4] for use in Fujaba’s class diagrams. For behavior specification,
model transformation are specified by using graph transformations within Fujaba. This
is done by modelling specialized UML interaction diagrams for the method bodies, so
called story diagrams [7, 8]. From such diagrams Fujaba can then generate executable
Java source code.

Figure 1 show such a story diagram. The activity diagram models the control flow.
The graph transformations within the activities model the behavior. The first activity
of Figure 1 shows such a graph transformation. Here, starting from the objectthis ,
which is the object the methodnameExists() is called on, a child is search via
thechildren association. This child’sname attribute should equal the passedname
parameter. If such a child is found, it is stored in a local variable calledchild .

Fig. 1.Story diagram

Afterwards, the activity is left. If the graph transformation was applied, it is left
via thesuccess transition. So the method returnstrue . Otherwise, thefailure
transition is taken, thusfalse is returned.

Note, that in Fujaba’s story diagrams, there are several places, where Java source
code can be used, e.g. the return value for a stop activity can be any Java expression and
is directly copied into the source code during code generation.

3 Integrating OCL into Story Diagrams

This section discusses the integration of OCL into Fujaba’s story diagrams. At first it
will give you a short overview of the possibilities to use OCL in story diagrams. Then
some special characteristics of Fujaba’s story diagrams, which must be considered to
use OCL in story diagrams, are presented. Finally a possible solution which considers
these special characteristics will be shown.

3.1 Where to Integrate

In this section, we will present a short overview of all possibilities to use OCL in Fu-
jaba’s story diagrams. On the left side of the Figures 2–6 one can see some examples
with the actual notation of Fujaba while on the right the same example is illustrated
using OCL:

Attribute expressions can be used to assign new attribute values to an attribute of an
object and to define some additional attribute conditions which must be fulfilled
by an object. In the example of Figure 2 the value of thename attribute of the
this -object is assigned to thename attribute of thechild -object by calling the
getName() method of thethis -object. On the right side of Figure 2 one can see
that thename attribute of thethis -object can be directly referenced using OCL.

Fig. 2.Attribute assertion and attribute constraints

Collaboration statements are used to execute methods, to define new variables or
to assign new values to variables. These operations can be combined using the
sequential, if- or while composition. In the following example (Figure 3) a col-
laboration statement is used to define the variablecount of type Integer. The
sizeOfChildren() method is an automatic generated method of Fujaba for
the to-n association children. It returns the number ofPerson instances which are
assigned to thethis -object as a child. Using OCL one can reference the children
association directly and can call thesize() method of OCL-Set to get the number
of children of thethis -object.

Additional constraints are boolean constraints which can be assigned to a story pat-
tern so that the story pattern is applicable if the constraint evaluates to true. In the
example of Figure 4 the additional constraint defines that thethis -object must
have exactly five children.

Fig. 3.Collaboration statements

Fig. 4.Additional constraints

Boolean transition guards can be used to realize a if- or while-composition in the
activity diagram part of the story diagrams. In the following example the vari-
able found will be set to true if thechild -object was successfully bound in
the previous story pattern. As one can see on the right side of this example the
oclIsUndefined() method can be used to formulate the boolean condition
with OCL.

Fig. 5.Boolean if-condition

Method return value The last possible use of OCL in Fujaba’s story diagrams is rep-
resented in Figure 6. There one can see that you have the possibility to provide a
return clause for astop activityof a story diagram.

Fig. 6.Stop activity

3.2 Resolving Scoping

To integrate OCL in Fujaba’s story diagrams we use the OCL parser of the Dresden
OCL Toolkit. It checks the syntax and the consistency of an OCL constraints in the
context of the containing story diagram. To perform a consistency check the parser
of the Dresden OCL Toolkit tries to find all variables which are referenced within an
OCL constraint in its story diagram. To do so, the parser has to know which variables
and objects are defined in the corresponding story diagram. So we have to generate the
context of the OCL constraints in a story diagram.

When generating the context of OCL constraints in Fujaba’s story diagrams we have
to consider some special characteristics of story diagrams:

– In story diagrams thethis -object and the method parameters are predefined bound
objects. Those can always be referenced in OCL constraints.

– A story diagram in general contains many execution paths. Every path visits differnt
story activities and so different variables and objects can be bound. It can e.g. occur
that one variable is not initialized on one special path leading to a story activity and
initialized on another one. That’s the reason why only these variables and objects
can be used in an OCL constraint of a story activity which are defined on every
paths leading to that story activity.

– An object of a story diagram is initialized with a valid value if the corresponding
story pattern is applicable. So the objects of an story pattern can only be referenced
by the OCL constraints of the next story activity if the story activity is connected
by a success or eachtime transition. An eachtime transition is used in combination
with a so called foreach activity. This special activity is not left after the first object
was found, but the specified transformations are executed on every valid object
allocation. In the example of Figure 1 we could have use a foreach activity to count
all children where thename attribute equals the passedname parameter.

In the following we present an algorithm which considers these characteristics and
can be used to generate the context of an OCL constraint in a story diagram. The con-
text, called environment, of an OCL constraint contains all variables that are visible for
the OCL expression. To obtain this context, an environment is assigned to every element
in the story diagram, beginning with the start activity. An environment encapsulates a
set of name–type bindings representing the variables accessible under this environment.
When a name lookup occurs, the environment first checks whether it contains a corre-
sponding binding itself. If this is not the case, the environment can delegate the lookup
to its parent environments (other environments linked to it via a parent association). If

all parent environments agree on the result of the lookup, this will be returned. If they
do not agree, the lookup fails. As we will see, parent–child relations can, thus, be used
to represent the control flow in a story diagram. Note that story diagrams allow to the
deletion of objects from the object graph. Therefore, after deletion of an object its name
will be no longer bound. To represent this, environments distinguish different types of
bindings; one of them is used to mark deleted objects.

In order to clarify the context generation algorithm an example story diagram is
represented in the next figure. There one can see that first an initial environment e1

Fig. 7.Generation of the OCL-Context

is assigned to the start activity of the story diagram and that the this-object and the
method parameter var1 are added to this environment. In the next step, the outgoing
transition of the start activity is traversed and the first activity is visited. In addition, the

environment e2 is assigned to the activity as input environment. Since the variables this
and var1 of the environment e1 can also be used within the first activity, the parent/child
relationship between e1 and e2 is created. In the first activity the variable var2 is created
and it is added to the outgoing environment e3 of the activity.

In the next step the two outgoing transitions of the second activity are traversed and
the environments e4 and e5 are assigned to the corresponding story activities. It must
be considered, that on the path following the failure transition the story pattern of the
second activity was not applicable. Consequently, we cannot assume that the objects
of the second activity were successfully bound. Therefore these objects cannot be used
in following OCL constraints. That’s the reason why the parent/child relationship is
made between the environment e4 and the environment e2 and not to the environment
e3. Similarly, the variable var2 could successfully be bound when taking the success
transition and can be used in following OCL constraints. So the parent/child relationship
between the environment e3 and e5 is created. In the next steps the environment e6 and
e7 are created, which contain the visible variables, and the outgoing transitions are
traversed.

As result the environment e8 is assigned to the next story activity and the par-
ent/child relations between the environment e8 and the environments e6 and e7 are
created. At this point the second problem mentioned above must be considered. Since
the variable var4 is defined only on the left path, the environment e8 does not contain
this variable. The same problem applies to the variable var2 also. Because of the suc-
cess transition this variable can be used only in the right path and thus the variable var2
is also not a part of the environment e8.

The last step of the generation process is to generate the environments e9 and e10
which is assigned to the stop activity of the story diagram.

3.3 Fujaba and the Dresden OCL Toolkit

Fujaba4Eclipse[9] is a Eclipse Plugin that among other functions integrates Fujaba’s
story diagrams into eclipse to specify methods. On the basis of Fujaba4Eclipse the
integration of the Dresden OCL Toolkit[4] for Fujaba’s class diagrams has already been
accomplished in [6].

We are, presently, extending this integration to also cover story diagrams. Thus, in-
put, consistency and syntax checking of OCL constraints in story diagram should be
possible, as it is possible already for Fujaba’s class diagrams. We use the algorithm de-
scribed in Section 3.2 to generate the context of OCL constraints in a story diagram. The
generated context is used by the parser of the Dresden OCL Toolkit to check whether
referenced variables within an OCL constraint are defined in the corresponding story
diagram.

Figure 8 shows a screen shot of the tool. In the left lower part of this figure you can
see the OCL-Editor for Eclipse which allows you to create and edit OCL constraints
for a given story diagram. Additional you can use the OCL parser of the Dresden OCL
Toolkit to check syntax and consistency of the OCL constraints against the story dia-
gram. In the example shown in Figure 8 one can see, that an error message is shown in
the problems view of eclipse, since the variable var4 is not defined on the right path of
the example story diagram.

Fig. 8.Generation of the OCL-Context

4 Generating Code

As already mentioned, Fujaba generates executable Java code from class diagrams and
model transformations. The code that would be generated for the left hand side of Fig-
ure 4 is shown below.

01 // bind child: Person
02 Iterator iter = this.iteratorOfChildren ();
03 while (!(fujaba__Success) && iter.hasNext ())
04 {
05 try
06 {
07 child = (Person) iter.next ();
08 // check isomorphic binding
09 JavaSDM.ensure (!(this.equals (child)));
10 // constraint

11 JavaSDM.ensure (child.sizeOfChildren() == 5);
12 fujaba__Success = true;
13 }
14 catch (JavaSDMException e) {}
15 }

To search through all children of thethis object, aIterator is created in line
02. The while loop from line 04 to line 15 is repeated till one child has been found,
that matches all conditions (fujaba Success == true) or till no more child ex-
ists in the list. In this loop, in line 07 the currentchild object is fetched from the
list. Since thethis object, and thechild object are both of classPerson , it is
possible to make a person its own child. Our semantics forbids that (if not stated dif-
ferent), so this is checked in line 09. Note, that Fujaba provides the library method
JavaSDM.ensure(boolean) which simply does nothing, when passed true and
throws aJavaSDMException otherwise. So, ifthis equalschild , this would
end the checks for the current object and continue with the next one. Otherwise the
additional constraint is checked in line 11. Note, that the text from the constraint is di-
rectly copied into the code surrounded by anotherJavaSDM.ensure . If this test is
also passed,fujaba Success is set to true, to indicate that a valid child has been
found. The loop is terminated in that case.

If the additional constraint is now specified in OCL, as done in the right hand side
of Figure 4, the code generation has to be adapted. We are currently integrating the
code generation of the Dresden OCL Toolkit in the presented work. The modified code
generation would leave most of the code above untouched, but changes only the check
of the condition in line 11. The source code below shows the code which is generated.

01 //bind child: Person
02 Iterator iter = this.iteratorOfChildren ();
03 while (!(fujaba__Success) && iter.hasNext ())
04 {
05 try
06 {
07 child = (Person) iter.next ();
08 // check isomorphic binding
09 JavaSDM.ensure (!(this.equals (child)));
10 // ******************* constraint ****************
11 OclAny self =
12 (OclAny) Ocl.getOclRepresentationFor(this);
13 OclBoolean constraintValid=
14 self.getFeatureAsCollection("children").
15 size().isEqualTo(new OclInteger(5));
16 JavaSDM.ensure (constraintValid.isTrue());
17 // ******************* constraint ****************
18 fujaba__Success = true;
19 }
20 catch (JavaSDMException e) {}

21 }

Within the Dresden OCL Toolkit the OCL Standard Library is implemented by some
Java classes, which are used by the Java code, created by the Java code generator of the
Dresden OCL Toolkit, to evaluate an OCL constraint. To evaluate the OCL constraint
of the right hand side of Figure 4 an instance of the classOCLAny is created as one
can see in line 11 of the code example shown above. This instance is used in line 13 to
get an instance of the classOCLCollection which represents the children associa-
tion end of thethis -object. Afterwards the number of the elements in this collection
is determined using thesize() method of theOCLCollection instance. This re-
sults in an instance of the classOCLInteger which isEqualTo() method is used
to evaluate whether the number of the collection elements equals 5. As result of the
isEqualTo() method call an instance of the classOCLBoolean is created which
isTrue() method returns the result of the comparison. So the result of this method
can be used as input of theJavaSDM.ensure() method call as one can see in line
15.

5 Related work

Many CASE tools offer OCL support for class diagrams. The Dresden OCL Toolkit
e.g. was also integrated in Together and ArgoUML. But those tools have no support for
model transformation and since no integration of OCL in other diagrams. The EMFT
project [10] supports OCL for constraints and queries. One can use OCL for constraints
on the static model and for specification of querying behavior. This way e.g. derived
attributes can be modeled. So EMFT uses OCL for some very basic behavior specifica-
tion. But it has no support for model transformations.

The QVT standard [11] by the OMG has some similar ideas. QVT defines a model
transformation language which uses OCL. QVT extends the OCL with imperative ex-
pressions to make it more powerful. In this ImperativeOCL things like attribute assign-
ments, link creation etc. can now be expressed. In our approach this imperative part
is modeled using story diagrams. Since now, complete tool support for QVT is still
missing.

6 Conclusions

The Fujaba Tool Suite is a CASE-Tool which supports the most important diagrams
of the Unified Modelling Language with code generation for Java. To also specify the
behavior of a system modelled with Fujaba one can use so called story diagrams.

As described in Section 2 story diagrams combine UML activity diagrams and col-
laboration diagrams for the specification of methods. Within story diagrams some ex-
pressions, like additional constraints, return values, etc are specified textually using Java
expressions. These expressions are inserted identically in the code generated by Fujaba.
If a developer wants to use another programming language than Java every constraint
within the story diagrams have to be changed separately. So it is useful to specify the
additional constraints using the Object Constraint Language.

Therefore, we discussed the possibilities to use OCL in Fujaba’s story diagrams
in Section 3 and described some special characteristics which must be considered to
generate the context of OCL contraints within story diagrams. After that we explained
an algorithm to generate the OCL context considering the special characteristics.

In Section 4 we described the code generation for Fujaba’s story diagrams and dis-
cussed how the generated code of a story diagram could look like using OCL.

As already mentioned in Section 3, we use the Dresden OCL Toolkit to integrate
OCL in Fujaba’s story diagrams. This enables using OCL in various places in Fujaba’s
story diagrams, while maintaining the ability to generate code. Development of a pro-
totype implementation of the concepts discussed in this paper is nearing completion.

References

1. Zündorf, A.: The fujaba toolsuite. http://www.fujaba.de/ (1999)
2. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model-Driven Architecture–Practice

and Promise. Addison-Wesley (2003)
3. Object Management Group: UML 2.0 OCL specification. OMG document ptc/2003-10-14

(2003)
4. OCL Toolkit Team: Dresden OCL Toolkit homepage. http://dresden-ocl.sourceforge.net/

(1999)
5. Object Management Group: UML resource page. http://www.omg.org/uml/ (2003)
6. Sẗolzel, M.: OCL für Fujaba. Großer Beleg, Technische Universität Dresden (2005) In

German.
7. Fischer, T., Niere, J., Torunski, L.: Konzeption und Realisierung einer integrierten Entwick-

lungsumgebung für UML, Java und story-driven modeling. Diplomarbeit, University of
Paderborn (1998)

8. Zündorf, A.: Rigorous object oriented software development, habilitation thesis (2001)
9. Zündorf, A.: Fujaba for Eclipse. http://wwwcs.uni-paderbord.de/cs/fujaba/projects/eclipse/

(2001)
10. The Eclipse Foundation: Emft - eclipse modeling framework technologies.

http://www.eclipse.org/emft/projects/ocl/ (2006)
11. Object Management Group: Mof qvt final adopted specification.

http://www.omg.org/docs/ptc/05-11-01.pdf (2006)

