Transformative and Troublesome? Students’ and
professional programmers’ perspectives on difficult
concepts in programming

LUCY YEOMANS, School of Education, Communication & Society, King’s College London, UK
STEFFEN ZSCHALER, Department of Informatics, King’s College London, UK
KELLY COATE, School of Education and Social Work, University of Sussex, UK

Programming skills are an increasingly desirable asset across disciplines; however, learning to program
continues to be difficult for many students. To improve pedagogy, we need to better understand the concepts
that students find difficult and which have the biggest impact on their learning. Threshold-concept theory
provides a potential lens on student learning, focusing on concepts that are troublesome and transformative.
However, there is still a lack of consensus as to what the most relevant threshold concepts in programming
are. The challenges involved are related to concept granularity and to evidencing some of the properties
expected of threshold concepts. In this paper, we report on a qualitative study aiming to address some of these
concerns. The study involved focus groups with undergraduate students of different year groups as well as
professional software developers so as to gain insights into how perspectives on concepts change over time.
Four concepts emerged from the data, where the majority of participants agreed on their troublesome nature—
including abstract classes and data structures. Some of these concepts are considered transformative, too, but
the evidence base is weaker. However, even though these concepts may not be considered transformative in
the ‘big’ sense of threshold concept theory, we argue the ‘soft’ transformative effect of such concepts means
they can provide important guidance for pedagogy and the design of programming courses. Further analysis
of the data identified additional concepts that may hinder rather than help the learning of these threshold
concepts, which we have called ‘accidental complexities’. We conclude the paper with a critique of the use of
threshold concepts as a lens for studying students’ learning of programming.

CCS Concepts: « Social and professional topics — CS1; Software engineering education; « Software
and its engineering — Object oriented development;

Additional Key Words and Phrases: threshold concepts; learning programming; focus groups; computer science
curriculum; accidental complexities

ACM Reference Format:

Lucy Yeomans, Steffen Zschaler, and Kelly Coate. 2018. Transformative and Troublesome? Students’ and
professional programmers’ perspectives on difficult concepts in programming. ACM Trans. Comput. Educ. 1, 1,
Article 1 (January 2018), 27 pages. https://doi.org/0000001.0000001

This work was supported by a King’s College Teaching Fund grant.
Authors’ addresses: Lucy Yeomans, School of Education, Communication & Society, King’s College London, Franklin-Wilkins
Building, Waterloo Road, London, SE1 9NH, UK; Steffen Zschaler, Department of Informatics, King’s College London,
Bush House, 30 Aldwych, London, WC2B 4BG, UK, szschaler@acm.org; Kelly Coate, School of Education and Social Work,
University of Sussex, Essex House, Falmer, Brighton, BN1 9RH, UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1946-6226/2018/1-ART1 $15.00

https://doi.org/0000001.0000001

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

1 INTRODUCTION

Programming is an essential skill for any computer science student. Indeed, many would argue that
most STEM (Science, Technology, Engineering and Maths) subjects would expect their students to
have some understanding and capability in programming as part of their course [31]. Programming
skills are seen to underpin many other subjects, teaching the importance of accuracy and attention
to detail as well as developing the capacity for problem-solving and creating solutions to real-world
problems [16, 18, 48]. The recent introduction of compulsory computer science education in many
countries has put programming high on the agenda, with pupils as young as 5 years old in the
United Kingdom expected to learn how to create and debug simple programs [5].

Nevertheless, learning to program is generally acknowledged to be very difficult: students are
expected to have the correct abstract understanding of a concept and be able to implement it in a
concrete manner using appropriate strategies [25, 40], requiring a substantial amount of hands-on
programming experience. A significant body of literature has been devoted to exploring the subject-
specific difficulties beginner programmers face. Eckerdal et al. [14] found novice programmers
were less likely to grasp the interrelation between a program’s parts and the program as a whole.
Sorva [47] suggests that, unlike in many other disciplines, programming students are less likely
to be encouraged to subjectively interpret and apply their learning, with many concepts being
precisely defined and implemented. Such strict parameters lead to undesirable and unproductive
programming outcomes. Other studies have argued novice programmers typically have a superficial
understanding of programming that is context specific; therefore, they struggle with knowledge
transfer [25, 30]. Such factors were apparent in a range of studies on computer-science students’
programming competencies, which found many students performing well below expectations
[28, 31]. This issue is compounded by an apparent lack of mechanisms available to educators
for determining the level of programming skill acquisition students should be attaining [32].
Furthermore, the heterogeneity of student cohorts regarding their experience of programming
makes differentiation extremely challenging; this is often attributed to be one of the major factors
contributing to high drop-out rates from university courses [21, 25, 37].

We experienced similar challenges in our own teaching of programming at King’s. In response,
we made several changes to our teaching. The programming module focused on in this research
was traditionally taught through a conventional lecture format followed by lab sessions in which
individual students worked through programming tasks. We revised the pedagogical approach
taken in the module, including lecture sessions with more interactive learning opportunities and the
introduction of pair rather than individual programming in the labs. Despite some improvement, the
progression rate of students remained a cause for concern, prompting one of the authors, a module
leader, to collaborate with an higher-education researcher and a science-education researcher to
undertake a project investigating the learning experience of student programmers.

The notion of ‘threshold concepts’ [34] can provide a useful lens for identifying critical points in
students’ learning journeys. We set out to use this lens to explore what students find challenging
when learning to programme and how we might adjust our teaching to help them overcome
these challenges. While there is already a substantial body of work on threshold concepts in
programming (and in computing more widely) [42], there appears to be a lack of consensus on what
these concepts are. More empirical research is required—in particular including triangulation with
participants other than (the traditionally chosen) teaching staff and students. Our study sampled
undergraduate students from different year groups as well as professional software developers,
seeking to identify candidate threshold concepts based on recurrence of concepts between these
groups. In identifying concepts, we particularly looked out for markers of difficulty (aligned with

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:3

the definition of threshold concepts as ‘troublesome’) and of change of perspective (as per the
definition of threshold concepts as ‘transformative’).

Our primary research question was: “What are threshold concepts for learners of (object-oriented)
programming?” As we progressed through our study, we added a secondary research question:
“Are threshold concepts a suitable, and pedagogically useful, concept in understanding learning of
(object-oriented) programming?”

Here, we report on the outcomes of this research, beginning with a discussion of theoretical
approaches in Sect. 2 and our methodology in Sect. 3. The findings are reported in Sect. 4 and
then discussed in Sect. 5. Finally, we draw conclusions about the implications of the study for
programming education and offer suggestions for future research directions.

2 THEORETICAL APPROACHES TO STUDENT LEARNING IN PROGRAMMING

A number of different theoretical lenses have been used to explore challenges faced by student
programmers. A great deal of literature exists on misconceptions in introductory programming [22].
For example, Clancy [7] argues that misconceptions and mistaken attitudes complicate learning
and suggests a range of sources in programming, including linguistic issues, confusion with
mathematical notation, and transferring new knowledge into inappropriate settings. However,
while misconceptions indicate a ‘failure to learn’ [13], it is argued a misconception lens is limited
at uncovering the ‘conceptual jewels’ of any given discipline. Holland et al. [19] suggest that
misconceptions in programming do not always occur because a concept is, in itself, difficult.
Instead, they may occur, for example, because students conflate everyday understandings of a
term with the term’s technical meaning. Thus, the presence of a misconception does not, by itself,
indicate a core concept [13]. An alternative approach which does focus on the ‘conceptual jewels’
of programming has been the use of ‘fundamental ideas’. Fundamental ideas are broad, lasting,
and of perhaps universal significance [46]. They connect ideas within and beyond a subject field,
are widely applicable—across disciplines, across time, across levels of expertise—and connect the
academic with everyday life. However, fundamental ideas are not likely to be transformative, and
are not necessarily challenging to learn [51].

Our goal for this research was to identify the concepts that students struggled with when
learning programming and where improving student understanding would have the biggest impact.
Neither the lens of misconceptions nor that of fundamental ideas seemed to fit this goal, while the
troublesome and transformative elements of threshold-concept theory provided a better fit. We will
discuss threshold-concept theory and its application in programming education in the following
sub-sections.

2.1 Threshold Concepts

The notion of ‘threshold concepts’ has been used in the wider education literature to identify
concepts that are central to students’ mastering of a particular subject area. Threshold concepts
can be defined as core ‘gateway’ concepts which unlock new, previously inaccessible knowledge
and may be in themselves particularly difficult to overcome [34]. Meyer and Land were the first
to introduce the notion of threshold concepts and in 2005 described them as theoretical summits
that, once reached, signify either a leap forward in an individual’s understanding, a clarity of a
concept’s complexity and how it connects to other ideas, or a point at which a significant idea
becomes embedded within someone’s knowledge in such a way that it would be hard to undo. They
subsequently simplified this definition into four characteristics of threshold concepts: Troublesome,
Transformative, Integrated and Irreversible.

Since Meyer and Land’s initial proposal the uptake of a threshold concept approach to teaching
and learning in higher education has been enthusiastic. Nevertheless, the definition and process of

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

identification of threshold concepts remains subjective and contested [2, 42]. Firstly, there is a lack
of consensus as to how many of the four characteristics are required to make a concept a ‘threshold’
rather than simply a ‘core’ concept [2]. Occasionally, threshold concepts are also required to be
boundary markers, marking the limits of a subject area [13]. Furthermore, Davies [10] concedes
that threshold concepts may be additionally difficult to identify because within any given discipline
they may be ‘taken for granted’ and as such will not be made explicit.

Later development of threshold-concept theory proposed that threshold concepts are rarely
grasped during one ‘eureka’ moment. Instead, it was suggested that they require a transitional
period—from one state of being and knowing to another [41]. Such transitional periods, or ‘liminal
spaces’, are where students are most likely to get stuck [41]. Studies have also suggested that more
nuanced aspects of the troublesome, transformative, integrated and irreversible should be considered
when understanding the nature of the problems faced by learners. For example, students may use
‘mimicry’ as a way of grappling with difficult, troublesome concepts, reproducing what they have
been shown without concrete understanding. Such mimicry can be viewed, however, as a useful
step towards more complete understanding of a concept while in the liminal space [34, 41].

2.2 Threshold Concepts in Programming Education

The challenging nature of learning to program has made threshold-concept theory an attractive
approach for educators in the field. Sanders and McCartney’s recent survey [42] provides a good
overview of research undertaken in this area, including a list of some concepts identified by various
authors, and highlights a number of open challenges. Previous studies on threshold concepts in
programming have had limited success in identifying suitable candidates. This was either due to
lack of consensus, resulting in too many concepts being nominated [44]; or because the concepts
nominated covered too large a theoretical area. Object-oriented programming (OOP), for example,
has been suggested several times in the literature as a prospective threshold concept in programming
(e.g., [4, 12, 35, 44]), but it has also been criticized as being far too large an area to be of significant
use [41]. Furthermore, other studies have sampled their participants from a university context only
(students and lecturers) [42]. So far there have been no studies which incorporate the views of
industry experts. As threshold concepts may take a long time to bed in, there is, thus, a gap in our
current understanding, as has also been acknowledged in the literature [2, 41].

The notion of mimicry has been identified as particularly relevant for programming. This is
a common approach to studying used by students managing difficult course requirements, but
is, on its own, less effective than deeper or strategic approaches [20]. Eckerdal et al. identified
a framework incorporating mimicry to be used for pinpointing when and where a student is in
a liminal space while learning to program [15]. The framework was based on different sorts of
conceptual understanding: abstract / theoretical understanding of a concept; concrete understanding
of the concept evidenced through practical programming; the ability to go from abstract to concrete
understanding; understanding why the concept is used and taught and understanding the application
of the concept in new situations.

Eckerdal et al’s study also discussed the emotional response associated with liminal spaces
and programming in particular. They argue that the strong emotional response from students
facing difficulties when learning to program is often ignored in the literature, while they should be
recognised as ‘normal and desirable’ by educators [15]. Furthermore, an emotional reaction to a
concept was regarded by Rountree and Rountree to be an indicator of its potential to be a threshold
concept, as both frustration and elation could show where a student is within liminal space [41].

An additional dimension of the transformative characteristic proposed by Eckerdal et al. was that
once students master the threshold concepts of their field they should have become familiar and
comfortable with the central ideas of their field. As such, they can be said to have acquired a new

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:5

identity, that of an ‘insider’ within a discipline rather than a student practising their subject [15, 41].
As programming skills have been identified as so difficult to master, we would expect this ‘feeling like
an expert’ to be particularly pronounced when students master threshold concepts in programming.

2.3 Theoretical Framework

The theoretical framework used in the study focussed on troublesome and transformative knowl-
edge, the first two characteristics of threshold concepts suggested by Meyer and Land [34]. Sanders
and McCartney [42] argue that the quality of transformation is the only quality essential in thresh-
old concepts. We would add that the dimension of difficulty provides useful indicators to help
identify potential conceptual candidates through its association with the concept of liminal space [4].
For these reasons, we chose to prioritize the troublesome and transformative characteristics of
threshold concepts in our study.

The framework also incorporated Eckerdal et al.’s notions of conceptual understanding to identify
instances associated with troublesome knowledge, where only partial understanding had taken
place and perhaps even unbeknownst to the participants themselves [15]. Partial understanding
could be evidenced through abstract understanding of concepts without the ability to use them
in a concrete manner and vice versa. We also looked for evidence of ‘mimicry’, or the copying of
the work of others or examples of work found elsewhere. Eckerdal et al.’s work also suggests that
‘naive’ knowledge may also be evidence of partial understanding, where students on reflection
realize that concepts they thought they had mastered were much harder than originally thought,
and perhaps still out of reach. We made further use of Eckerdal et al.’s approach through providing
multiple facets of the transformative characteristic, including the ‘feeling like a programmer’ or
‘insider’ and looked for additional clues as to a student being in liminal space such as evidence of
an emotional response.

Table 1 outlines the elements of threshold concept theory drawn upon as part of the study, both
in developing the methods used and the subsequent analysis to identify threshold concepts in
programming.

3 METHODOLOGY

The study took place over the academic year 2015-2016 at King’s College London, where all three
authors were based. Programming is introduced to students in the Department of Informatics
through a large-class (approx. 350 students per year) first-year undergraduate module as part of a
three-year BSc programme. As part of the overall programme, students develop their programming
skills through a range of group and individual projects and assignments. As in other higher-
education contexts [37], students’ previous experience with programming varies widely. In a
base-line survey', approximately 52% of respondents self-identified as ‘beginners’ with ‘no or very
little programming experience’. At the same time, approximately 30% of respondents claimed they
had worked on smaller or larger object-oriented programs.”

The methodology was influenced by a desire to improve the learning experience for students on
the module. The following sub-sections discuss the participants sampled, the methods chosen and
the study’s approach to data analysis to achieve this aim, as well as the strengths and limitations of
these decisions and processes.

1Based on the survey developed by Pedroni et al. [37]
2The boundary between small and large was set at approximately 100 classes

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

Characteristic Description

Troublesome knowledge Indications of participants getting ‘stuck’ or ideas which
have taken time to overcome

Transformative knowledge Evidence of gaining new perspectives or transformation of
view on broad conceptual area

Integrated knowledge Concepts which lead to seeing how existing knowledge is
linked together

Irreversible knowledge Suggestions that a concept or idea is now permanently
embedded

Liminal space Suggestions that participants are in the transitional period

between beginning to learn a new concept and being pro-
ficient with it—for example, an emotional response to the
learning process, either positive or negative

Partial understanding Evidence of partial understanding having taken place such
as: mimicry of understanding; abstract understanding with-
out concrete understanding; being unable to apply a concept
in a new or different context; concrete understanding with-
out abstract understanding; naive version of knowledge;
(not) understanding the rationale for learning a concept;
contextualized learning

Feeling like an ‘insider’ Participants talk of feeling like a programmer; evidence
of students’ use of new language; indications of subjectiv-
ity, where participants have repositioned themselves when
talking about ideas related to the field

Table 1. Threshold concept theoretical framework

3.1 Participants

Data were collected from three sample populations: first-year undergraduate students (N = 9),
third-year undergraduate students (N = 3) and professional software developers with a range of
programming experience (N = 5). The rationale was to capture a sense of which concepts were
identified as particularly challenging at the beginning and end of the undergraduate experience, as
well as incorporating the perspectives of practitioners far more established in the field. The emphasis
of subject expertise within threshold concept theory [43] suggests that experts are required in
a study using the threshold-concept lens. The view of experts was drawn upon because their
familiarity with the subject knowledge meant they could know where in a body of knowledge to
‘look’ [44]. The decision was made not to include the perspectives of faculty staff as, while they
could be considered experts in their field, their perspective would likely be as expert-teachers rather
than from their own personal experiences of learning to program. Professional software-developers,
meanwhile, are not faced with the same potential limitation and, furthermore, bring in expertise
from fields beyond the academic environment [1, 41]. Practitioners, in particular, have not been
involved in threshold-concept research so far [42]; one of our aims was to address this gap.
Nevertheless, sampling from professional software developers still has potential drawbacks.
For example, professional pride may prevent them from acknowledging finding certain concepts
difficult and there is the added danger of hindsight bias. The transformative nature of threshold
concepts means that experts may be in a position where, having crossed the threshold a long time
ago, the knowledge can become tacit and ‘taken for granted’ [10, 34] Concerns regarding hindsight

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:7

bias for both the practitioners and, to a certain extent, the third-year undergraduate students can
be mitigated somewhat by the involvement of the first-year undergraduates in the study. As will
be discussed further below, the study aimed to find commonality of responses from the three
different sample populations in order to validate our findings. To counter concerns of ‘professional
pride’ as mentioned above, the main focus of the discussions were practitioners’ experiences of
learning to program, rather than the concepts they continued to struggle with. However, as will be
explored more in the findings, many of the participants from this sample volunteered examples of
the ongoing challenges of programming.

The undergraduate students (1 female and 11 male) were of traditional university age, came from
a range of backgrounds, including home and international students, and had a range of experience
with programming. The software developers were male and aged between approximately 20 and 60
years old. They had followed various educational and professional paths to become professional
programmers and had differing amounts of experience.

A variety of methods were used to recruit participants:

e First-year undergraduate students. To familiarise students with the researcher and the research,
the first author—who later undertook the focus group sessions—was introduced to the students
at the start of one of their first-year programming lectures by the second author—who was
teaching that module. Later, the first author observed a number of lab sessions as part of
the first phase of data collection and recruitment for the focus-group sessions. In addition,
posters and emails (sent by Departmental administrators) were used to recruit participants.

e Third-year undergraduate students. The first author directly recruited third-year students
through conversations in the computing lab, where they were working on their coursework.

e Professional software developers. This group of participants was recruited from London Java
Community through emails sent by the community coordinator to members. We did not es-
tablish whether any of these participants had previously studied at King’s. Some professional
developers did in fact not have an undergraduate degree in programming at all. They were,
however, not specifically recruited because of their education path.

Participants were offered no remuneration for their participation. They were provided with
detailed information about the project and all participants gave written consent. Throughout the
research, it was clear to all (potential) participants that participation was voluntary and would, in
particular, not have any impact on their learning or assessment outcomes.

3.2 Methods

The study collected a range of qualitative data, shaped by the theoretical framework based on
threshold-concept theory (cf: Sect. 2.3). The instruments were designed with a focus on drawing
out examples of troublesome and transformative concepts, with questions related to aspects of
programming that participants have / had struggled with as well as which had potentially provided
them with a paradigm-shift in understanding of the subject matter. The study used two different
approaches to elicit nominations for threshold concepts from each participant, to help explore tacit
knowledge and enable the identification of threshold concepts where participants might have only
partial awareness. These approaches are described in detail below.

All data collection was undertaken by the first author, an educational researcher without pro-
gramming background who had no teaching relationship with student participants. Throughout
the study, the first author explicitly told participants that she had limited previous knowledge in
computer science. This was done to ensure participants (in particular first-year students) felt free
to discuss whichever programming concepts they found to be pertinent without fear of criticism.

There were two phases of data collection:

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

(1) The first phase was comprised of observations and unstructured interviews with first-year
undergraduate students participating in pair-programming labs over a three-month period.
Students were asked questions regarding their experiences of programming and which as-
pects of the course they enjoyed and which they found difficult. These observations and
unstructured interviews took place during the lab sessions. The first author observed and
informally questioned students completing lab exercises. Observations and unstructured
interviews were recorded in field notes of the first author. While these data were not exten-
sively used in the final analysis, they were drawn on to inform the questions asked during
the next data collection phase.

(2) The second phase encompassed five focus groups with a range of participants’, conducted
to investigate potential threshold concepts in a more directed manner. Focus groups were
chosen as the main data collection method as they can be used to gauge to what extent views
are shared amongst a group of people [11]. This seemed the most appropriate approach
to explore the problem the study was attempting to address, as discussed further below.
Furthermore, focus groups have been argued to facilitate the democratisation of the research
process by giving participants greater ownership over the discussions and redirect power
from the interviewer [23]. While this was a desirable outcome for our study, it brought with
it the potential of participants deviating from the subject matter, talking over one another
(thereby making transcription difficult), or having one or more participants dominating
the group. The study mediated these issues by using an experienced facilitator to manage
the discussions. On a practical note, focus groups also helped with recruitment as, in our
experience, undergraduate students are less likely to attend individual interviews.

Focus groups were moderated by the first author and consisted of two parts:

(a) In the first part of the focus group, the first author asked participants open questions
regarding aspects of programming they found enjoyable and aspects they found challeng-
ing. Students were also asked to self-assess their level of programming experience. This
was done to give participants a general sense of the nature of the study and to provide
them an opportunity to offer responses which were not influenced by the prompts used
in the second half of the focus group as detailed below. Indicative focus-group prompts
can be found in Appendix A.

(b) The introductory questions were then followed by a structured activity where participants
were asked, as a group, to physically organize a list of concepts covered in our curriculum
in order of difficulty (see Fig. 1). A list of concepts provided on these cards can be found
in Appendix B. Participants were also provided empty cards to add to the list, which were
used twice during the study (adding polymorphism, and functional programming). The
final arrangement was then used as a prompt in further questioning related to potential
threshold concepts as discussed above.

At no point were participants’ descriptions of concepts challenged or verified by the facilitator.

Focus group sessions were audio-recorded and, subsequently, transcribed by an external

agency.

Three focus groups were held with undergraduate students in their first year, who were asked
to reflect on their experiences of the first two terms. A further focus group took place with
undergraduate students in their third year, where they were asked to consider both their experiences
in their first year and their current views, and a final focus group was held with professional
programmers who came from a range of training backgrounds with varying levels of experience.

33 first-year groups with 2, 1 (because of scheduling constraints), and 6 participants, respectively; 1 third-year group with 3
students; and 1 group of professional developers with 5 participants

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:9

Fig. 1. Card sorting activity

The industry professionals were asked to recount their experiences of learning programming and
invited to discuss what they continued to encounter as problematic. The aim in this approach was to
find some commonality between the concepts proposed from the three different sample populations
and then put the resulting nominations under further scrutiny as candidates for threshold concepts.

3.3 Analysis

All focus groups were digitally audio-recorded and transcribed, while photos were taken of the
sorting activity to record the final arrangement of concepts as decided by participants. Data were
analysed using a mostly deductive approach, using codes developed through the threshold-concept
framework as outlined above. Transcripts were initially coded and sorted by the first author, using
the NVivo software package, into specific programming concepts, and participants’ references to
topic difficulty, transformation of understanding and reported examples of partial understanding in
its different forms. Our interest in exploring liminal space meant attention was particularly given to
data related to difficulties participants had faced during their training and the emotional responses
which may have accompanied these issues. This approach led to the addition of supplementary codes,
details of which are discussed below under the heading of ‘additional findings’. Once anonymized,
the first and second author undertook a further analysis round to ensure the initial findings
were valid and no concepts were overlooked by the educational researcher. Through this second
analysis, additional concepts were identified which appeared to be only partially understood by
the participants, even when this partial understanding was not explicitly identified by participants.
These instances were coded separately for clarity. Programming concepts which were mentioned in
three or more of the five focus groups, with one of them being the practitioner group, were analyzed

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Lucy Yeomans, Steffen Zschaler, and Kelly Coate

Dimension of Threshold
Concept Theory

Data Example

1:10
Programming
Concept
Classes and
inheritance

User Interface Ar-
chitectures

Data structures

Abstract classes

Troublesome and transforma-
tive by practitioners, trouble-
some and transformative by
students

Transformative by practition-
ers, troublesome and transfor-
mative by students

Troublesome by practitioners,
troublesome and transforma-
tive by students

Troublesome and transforma-
tive by practitioners, trouble-
some by students

“Classes and inheritance for me...yes,
getting your head around that was quite
hard but then once you, it becomes quite
a vital part of the programming once
you get your head around it” year 1 stu-
dent participant

“The MVC [Model View Controller] for
me it’s, I don’t really get it yet like how
to actually do it but, yes, it actually
makes the programme neater and stuff,
yes” year 1 student participant

“(Data Structures) weren’t hard to un-
derstand, but we don’t, we all under-
stand, we should understand it a little
bit better than what we currently do.
And definitely the first year we felt that
way” year 3 student participant

“And abstract classes for me anyway;, I
don’t know about anyone else...Yes, I
mean I understand it I just don’t know

how like I just I've never seen the point
in using it” year 1 student participant
Table 2. Identified threshold concepts

for evidence of being both troublesome and transformative. Concepts which were subsequently
identified as having just one of the characteristics were discarded. The remaining concepts are
outlined below.

4 FINDINGS
4.1 Candidate Threshold Concepts

Following the analysis, four candidates for threshold concepts in programming emerged. A summary
can be found in Table 2.* Below, we discuss each concept in more detail. In these discussions, we
begin by giving a brief description of the concept before discussing how this concept was interpreted
by our participants and what led to it being included as a candidate threshold concept. It should be
noted that the initial descriptions we provide below are our own definitions and that they were not
provided to or elicited from the participants.

4.1.1 Classes and inheritance. Classes are a fundamental notion in object-oriented program-
ming, encapsulating state and behaviour of the objects being described (sometimes referred to as
“simulated”) by the program. Classes, then, can be used to instantiate new objects (i.e., they act as a
blueprint for new objects), but they can also serve to type (or “classify”) objects. Inheritance defines
relationships between classes, enabling some classes to obtain copies of (or “inherit”) features of

4 Appendix C provides some more detailed statistics about the occurrence of individual concepts across the whole data set.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:11

other classes. When a class A inherits from a class B (viewing classes as blueprints), we can also say
that B generalises A (from a type perspective).

‘Classes and inheritance’ was a relatively straightforward nomination for a threshold concept. It
was mentioned in all five of the focus groups and both students and practitioners described it in terms
that could be identified as troublesome and transformative. One of the first-year undergraduate
focus groups specifically spoke of classes and inheritance as transformative:

Both, I didn’t know you could inherit things from other classes originally so it improved
my understanding and helped with my program

(Year 1 student)

Some students in the third year particularly singled out ‘classes and inheritance’ as a concept for
which they needed additional support:

Respondent 1 Do you remember the abstract class and inheritance?
Respondent 2 That’s hard though.
Respondent 3 That was hard.

4.1.2 User Interface Architectures. User interfaces are where a software system interacts with its
users and vice versa. Modern user interfaces, particularly graphical user interfaces (GUIs), often
make use of a event-driven style of programming, where the software waits to receive events from
the user (e.g., the user types a character, or moves the mouse cursor to a new location) and then
handles these events and responds by, ultimately, modifying features of the GUI in an appropriate
way. This usually involves a substantial number of objects inter-operating in a non-trivial manner.
The structure of these object interactions is sometimes referred to as the user-interface architecture.

Some of the first-year undergraduates implied they found ‘user interface architectures’ trouble-
some, with one mentioning a partial understanding characterized by a theoretical but not a concrete
grasp of the idea:

I sort of understand Regular Expressions and I can implement them whereas stuff like User
Interface Architectures. Like, ‘comfortable’ is different, because it’s the implementation
and the theory behind it. Like Layout Management Concepts are quite easy because there’s
like a visual guide to how they’re laid out, but actually making them bend to your will,
per se, is quite fidgety.

(Year 1 student)

First year students in another focus group described user interface architectures in language that
could be identified as indicating a transformative and troublesome concept. However, the third-year
students didn’t allude to the concept at all. The practitioners suggested the idea of user interface
architectures as a gateway concept, as the ability to master it led to them seeing how programming
can be used in a real-world context rather than simply solving an exercise in the classroom:

Well I guess I think the thing that makes me feel real about it is the real-world side of
things, which is the user interface architecture or the real-world entities. .. Just being able
to build something which does something.

(Practitioner, emphasis added)

4.1.3 Data structures. Any computation requires storing data in memory. The choice of data
structure (i.e., the way in which data are stored and cross-referenced) can substantially influence
the efficiency of the algorithms processing the data. Data structures usually taught at university
level include various types of list structures, queues, stacks, and maps.

While some concepts were referred to in language indicating troublesome or transformative
nature in a relatively fleeting manner, data structures were discussed in greater depth by both the

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

students and practitioners. The first-year undergraduates particularly talked about the challenging
nature of the concept:

How to organize it, reorder, number, or like link list, it took me longer to understand how
to, like the more detailed stuff to do with arrays and different data structures. I found that
more in-depth stuff harder than inheritance, encapsulation.

(Year 1 student)

The third-year undergraduates had an interesting discussion regarding the value of data struc-
tures, initially suggesting they weren’t used at all. However, while doing the sorting activity there
was some hesitation on how to position ‘data structures’ in their hierarchy of concepts. When
prompted to explain their indecision, the participants began to discuss amongst themselves whether
they fully understood the concept and recognized that it would have been worth the time to resolve
this issue to improve project work in their final year:

Respondent 1 (Data structures) weren’t hard to understand, but we don’t, we all un-
derstand, we should understand it a little bit better than what we currently do. And
definitely the first year we felt that way.

Respondent 2 It was, I don’t know, if we had put more effort for data structure for those
interviews® I think it would have helped a lot.

Respondent 3 That’s true.

These discussions imply various forms of partial understanding associated with data structures.
Initially this was found in the lack of recognition that data structures were a core concept. In the
following discussion the idea emerged from the participants themselves that perhaps they had
previously held a naive version of knowledge in this area. They suggested that they were unable to
apply the concept of data structures in different contexts. The practitioners’ discussion revealed
further insight as to how this partial understanding is perpetuated:

Incorrect data structures and algorithms: people generally don’t do them correctly, so
people just don’t do them at all. Most of the stuff I see that’s written avoids the use of
having to use algorithms and data structures because they don’t quite know how to do it
and they try to re-use stuff that they can find that’s been written by experts.

(Practitioner)

Despite the difficulties suggested by this participant, the practitioners still agreed that data
structures were a fundamental aspect of programming, corroborating our suggestion that the
undergraduate students had experienced a naive version of knowledge:

This is the basics for any program writing, any good programmer should know data
structures and algorithms.

(Practitioner)

We found strong evidence of partial understanding related to data structures. At the same time,
both students and practitioners agreed that this was an essential concept. It is interesting to note,
however, that professional programmers simply mention data structures as the “basics” without
further discussion, while UG students consider them in much more detail and, as in the focus group
quote above, appeared to realise that they may not have a sufficient understanding of this concept.

We can see two possible interpretations of these data. On the one hand, this may be an indi-
cation that data structures are an instance of a threshold concept tacitly known by professional
programmers (and presumably teachers). On the other hand, this may also indicate that profes-
sional programmers themselves only have a naive understanding of the concept (cf. also the first

SReferring to technical job interviews, which often focus on algorithmic and data-structure issues

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:13

quote above). In day-to-day programming (outside of performance-critical or resource-constrained
environments), elementary data structures like lists, trees, or maps will be reused from ready-made
libraries, often without any additional analysis. This may mean that, for many programming tasks,
a superficial knowledge of data structure and a usage based on mimicry may be sufficient to get
the job done. Possibly, professional developers have a tacit awareness that the implementation
details of specific data structures do not matter for many contexts. While they acknowledge their
importance generally, they are content to work with surface-level knowledge. Thus, these two
interpretations may not necessarily be diametrically opposed.

4.1.4 Abstract classes. As programmers define classes and their features, they typically aim
for a correspondence between the classes defined and objects that are meaningful in the domain
for which the program is being developed. Sometimes, one identifies commonalities between a
number of domain objects, but there are sufficiently many differences to justify creating separate
classes for the domain objects. Abstract classes allow programmers to encapsulate the remaining
commonalities in one class, while making it explicit that this class should not be instantiated
directly.

The undergraduate students discussed the tricky nature of abstract classes, with some of them
admitting that they still didn’t understand them and another suggesting, as is illustrated in Table 2,
that they didn’t understand why they were taught, indicating a partial understanding of the concept.
This latter perspective was shared by the third-year students, one of whom claimed, T've never
used an abstract class’. The practitioners agreed that abstract classes were both troublesome and
transformative, but did not discuss the concept in detail:

Interviewer Which did you really get stuck on, you know, possibly you found it very
frustrating and it took a while for you to really get it?

Respondent 1 [think just this kind of group of abstract and interfaces [points at some
cards], particularly those concepts.

Interviewer [Reading the card labels] Abstract classes, encapsulation and interfaces
okay... What about in terms of, it doesn’t necessarily have to be about feeling like a
programmer, but it really was a big deal once you’d actually thought okay I get what
this is now, this has made a big difference to how I understand programming?

Respondent 2 Well I guess it’s all four of these. [points at some cards]

Interviewer So these ones again [Reading the card labels], so the abstract classes, en-
capsulation and interfaces, classes and inheritance.

4.2 Additional Findings

As mentioned, to identify potential threshold concepts the data analysis was conducted in a largely
deductive manner. However, the researchers maintained an open approach to data and as such
made some interesting findings that were not threshold concepts in themselves, but could be related
to our understanding of them. These findings are outlined below.

4.2.1 Threshold skills. As part of the lab observations one of the participants suggested that the
nature of programming is skill-based and only makes sense in application. We therefore decided
to consider the place of skills in the study. A similar notion has been put forward in some of
the literature on threshold concepts [49]. One possible threshold skill was identified throughout
the course of the study—Code Organisation—which was considered to be both troublesome and
transformative by all of the focus groups:

Organisational code. .. is definitely one of the.. . it takes experience to write organized code.

(Practitioner)

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

I think you learn about code organisation throughout your life.
(Year 3 student)

You have to be organised not to lose any piece of code and to actually be able to find,
like. .. adding, like, two lines of code.

(Year 1 student)

While there are a number of conceptual principles related to code organisation—for example, the
general SOLID principles (e.g., as described in [29])°—really mastering this topic requires gaining
experience through application. Essentially, it is less about knowing the abstract concepts than
about developing the skill of applying them in the right way in a given context.

A second potential threshold skill identified was Designing Objects. When developing object-
oriented software, a key concern is how to define an appropriate set of objects and their inter-
relations that can, together, solve the given problem effectively. This involves defining appropriate
classes, relations between these classes, as well as methods implementing suitable collaborative
behaviors between the objects that instantiate these classes. This skill is clearly related to Code
Organisation.

Designing objects was singled out as transformative by some of the first-year students and
troublesome or ‘challenging’ by others:

I do think objects would be quite challenging getting your head around... objects. .. which
also goes hand in hand with the classes in inheritance thing.

(Year 1 student)
The third-year students agreed together that this skill was transformative and integrative:

Interviewer Anything else that you can think of that jumps out at you, something that
once you got your head around it really changed your ideas of programming. .. ?

Respondent 1 designing objects, it seems pretty simple now but once understand it it’s. ..

Respondent 2 It’s pretty good, knowing and understanding it.

Respondent 1 It helps your code organization, but it links into all these other things as
well.

We recognise it could be questioned whether the language used by the students indicates
transformation. We suggest that in a group of (mainly male) peers it might be too much to ask
undergraduates to describe powerful learning experiences. Instead, we are interpreting the language
they are using as evidence of a type of learning experience that cannot be undone or unlearned,
hence we consider it as evidence of the transformative aspect. Meanwhile, the practitioners described
the skill as troublesome for them when they were learning to program.

4.2.2 Emotional response. Emotional responses frequently occurred or were referred to when a
participant discussed a potential threshold concept, adding additional validity to claims of their
legitimacy as such. Furthermore, it was perhaps unsurprising to find emotions appearing throughout
the interview data. As has already been discussed, programming is difficult to learn and, it could
be argued, difficult to practice. When a program is successful it can elicit a powerful emotional
response:

The acronym stands for a list of principles for structuring code: The ‘single responsibility principle’ states that a class
should only be responsible for one thing, the ‘open / closed principle’ is often described as requiring that “software entities
should be open for extension, but closed for modification”, ‘Liskov’s substitution principle’ requires instances of classes to
be usable wherever an instance of a super class was usable, the “interface segregation principle” asks for small-grained,
role-specific interfaces, and the ‘dependency inversion principle’ asks that code should depend on abstract interfaces rather
than concrete classes and let the specific classes be configured—for example through dependency injection.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:15

I mean it’s probably that if I have to do work I'd rather program because it’s quite fun
when you press run and something actually works. It pops up and you say oh my God
I've done something! Like that’s, I think that’s one of the best things.

(Year 1 student, emphasis added)

Asillustrated by the following quote from one of the practitioners, the challenges of programming
continue well into a professional career, with the notion of success dependent on peer approval:

I’ve got ten years’ professional experience, and I find it sometimes really intimidating
when I go on [website] to look at comments, and someone will say you’re not a good
programmer, you don’t know this or you don’t know that

(Practitioner)

The above quotes point to the somewhat dramatic nature of learning to programme, whereby
pushing one button enables the learner to see instant success or failure. This cliff-edge of getting
the answer right or wrong is quite distinct from learning in other subject areas that require coping
with more subjectivity. We believe the impact that this emotional journey has on the learner as
they progress through threshold concepts is, as yet, under-explored. Given that our participants
on the whole were more likely to talk about the emotions of learning to program, rather than the
type of ‘transformational’ learning experiences commonly discussed in the threshold-concepts
literature, it may be that the language of threshold concepts in programming needs to be nuanced.
Eckerdal et al. seem to make a related point in their discussion of emotional response in [15].

4.2.3 Feeling like an ‘insider’. Related to the emotions alluded to in the previous section was
the complex notion of ‘feeling like an insider’. Participants were asked about concepts which,
upon mastering, made them feel ‘like a programmer’. This was intended as a prompt to indicate
transformation (as outlined in the theoretical framework, Sect 2.3). The responses of the practitioners
in particular were quite surprising, as they did not convey confidence in feeling like an ‘insider’
despite having, in some instances, decades of professional experience:

A lot of people don’t feel that confident in their ability, and so for me it doesn’t feel like
there was one concept that I grasped that necessarily made me feel like a programmer. It’s
more as you get more exposure to your colleagues and stuff, and I guess you're getting less
criticism, you start to feel a little more confident

(Practitioner 1)

I don’t know when I started thinking I'm a proper programmer but for me when my code
goes through a code review successfully, a peer review successfully and sits in production
without breaking. .. for say three, four weeks without any problem at all, then I start feeling
proud, not proud, but content and satisfied with myself.

(Practitioner 2)

Both quotes once again reveal the range of emotional strings tied up with ‘feeling like a pro-
grammer’. The second quote is a further suggestion of the drama involved in programming as
a discipline, both to learn and to practice. Despite being an experienced software developer, the
practitioner’s satisfaction with his work came not with good design but when his software did
not ‘break’. The participant alludes to the peculiarity in programming of the work product being
judged largely for its ability to not go wrong rather than because of inherently good design or
execution. The students similarly referred to a sense of relief that a program simply functions as
required (see quote in Sect 4.2.2, above). The challenge is for learners to go beyond this stage to
construct a program which is elegant and masterly.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

4.2.4 Accidental complexities. An unexpected find in the data was the occurrence of what we
termed ‘accidental complexities’. Accidental complexities can be a concept that isn’t a threshold
concept, but which when taught alongside other larger (perhaps threshold) concepts, might in-
troduce additional difficulty for the learners. These complexities are accidental because they are
intended to enhance student learning, but may instead unintentionally end up getting in the way of
learning. Examples of such concepts mentioned by student participants include Layout Managers—a
specific concept in the context of graphical user interfaces—and anonymous inner classes, which
were taught as a concise mechanism for implementing event handlers (part of the User Interface
Architectures threshold concept). The latter seemed to trouble students partly because it introduces
complicated syntax at a point when students are already struggling to make sense of a number of
new concepts.

Like for example for the ActionListener, we did talk about it in the lectures at one point,
didn’t we? And he was talking about anonymous sub-classes [sic] and stuff like that, I
sort of zoned out of that but anyway. But when you create an ActionListener you have a
default, by default it makes like an ActionListener across the bottom so I knew that you
had to put [unclear] in there but I didn’t realise how to put it anonymous sub-class.

(Year 1 student)’

Accidental complexities may also occur when attempting to provide the students with an ad-
ditional skill (e.g., teamwork), or when using a pedagogical device (e.g., pair programming as a
means of enabling peer teaching). While the inclusion of such activities would generally be seen to
be good practice, several of the student participants discussed the problematic nature of trying to
amalgamate different people’s ideas together to find a cohesive solution to the problem at hand.
This was cited as a particular issue when students were in teams of mixed experience or ability:

The major course work it’s a lot harder than the minor course work was, because obviously
it’s a more complex problem but at the same time there’s more people. So having more
people is itself a problem because you’re going to try and get more people’s ideas into one
cohesive [whole].

(Year 1 student)

5 DISCUSSION

This study had the opportunity to use a a number of different lenses to explore conceptual difficulties
in programming education (cf. Sect. 2). We chose a framework based on threshold-concept theory,
as the idea of uncovering the conceptual “jewels” in programming [41, 46, 47] was particularly
fitting for our aim of improving teaching of programming. However, as a result of this study, we are
less convinced about the viability of a threshold-concept lens in achieving these aims. In particular,
as other researchers before us, we faced challenges in clearly identifying concepts as troublesome
or transformative, and finding the right granularity of concepts to identify. In this section, we
discuss these issues in detail, followed by a discussion of the limitations of the research undertaken
and implications for pedagogy and research.

5.1 The challenges of defining threshold concepts

Using the dimensions of troublesome and transformative as part of the analysis framework should
make the initial identification of threshold concepts relatively straightforward. However, identifying

"Note that students associate ActionListener with the concept of event handlers as this is the primary context in which they
have been taught about event handlers.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:17

concepts with these properties in the focus-group data was more challenging than we originally
expected:

(1) Challenges of identifying troublesome concepts. In many cases, troublesome concepts were
directly identified by participants. However, in our second analysis round, we found evidence
of over-confidence where students did not report a concept as troublesome, but their subse-
quent discussions revealed that they had only a partial understanding of the concept. It seems
clear that explicitly identifying concepts as troublesome can be difficult for participants, as
also found by Shinners-Kennedy and Fincher [44]. An important reason for this seems to
be that troublesome concepts often lead to partial understanding, which prevents partici-
pants from actively identifying their troublesome nature. We argue that sustained partial
understanding of a concept can be a strong indicator that someone is in liminal space; that
is, that the concept is indeed sufficiently troublesome to be a candidate threshold concept.
Conversely, however, once participants have passed through the liminal space, it becomes
difficult for them to remember that the concept was ever difficult. The concept has become
tacit knowledge, which may also make it more difficult to teach explicitly to others.

(2) Challenges of identifying transformative concepts. There is some evidence of the transformative
effect of certain concepts in our data—for example, the emotional response some participants
conveyed when reporting mastering a task associated with a particular concept. However, it
could be challenged whether these transformations are really as substantial as the definition
of threshold concepts suggests:

“A threshold concept can be considered as akin to a portal, opening up
a new and previously inaccessible way of thinking about something. It
represents a transformed way of understanding, or interpreting, or viewing
something without which the learner cannot progress.” [33]

However, we argue that for any given discipline there are likely only very few concepts
that have such a substantial transformative effect. While the transformation they achieve
undoubtedly has a substantial impact on a student’s ability to grasp a field, identifying other
troublesome concepts with a smaller transformative effect is at least as important for the
design of effective pedagogies.

Identifying troublesome concepts—while a more complex process than may have been previously
thought—should be possible with the considerations indicated above. However, we are cautious of
the extent to which the concepts identified through our study fulfil the profoundly transformative
nature seemingly expected within threshold concept literature. We argue that there can be gradi-
ents of transformation, and within programming education particularly we suggest that a ‘soft’
transformation occurs for students when they master the concepts proposed within this paper.
We feel that identifying concepts associated with such transformation is of use from a pragmatic,
pedagogical perspective (see Sect. 5.5). Nevertheless, we recognise that the argument for ‘soft’
transformation is somewhat contingent on one’s perspective regarding identifying a few broad
threshold concepts vs. many precise ones. This issue is discussed further in the next section.

5.2 ‘Broadness’ or ‘granularity’ of threshold concepts?

As mentioned at the beginning of this paper, there has been discussion in the literature regarding
the suitability of object orientation as a threshold concept candidate, with arguments that it
covers too broad an area. This study attempted to provide some granularity and suggested ‘classes
and inheritance’ and ‘abstract classes’ as potential candidates. These findings correspond with
those identified by other studies. For example, Sanders and McCartney [42] suggest inheritance,
polymorphism, object interaction and software objects as candidates for threshold concepts in OO.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

Sien et al. [45] suggested classes and objects were part of a family of associated threshold concepts
situated in OO. Meanwhile, the “Sweden Group” of researchers have suggested that objects and
classes are merely difficult sub-concepts of OO, rather than threshold concepts in themselves [13].
We strongly feel that OO is too big to be a useful candidate threshold concept, especially from a
perspective on pedagogy. Instead, the concepts identified through our study (as well as possibly
those identified in [42, 45]) are of smaller granularity but still sufficient difficulty and provide
enough transformation in students’ understanding to be more useful as a basis for pedagogic
interventions.

We suggest that the lack of consensus on identified threshold concepts in programming indicates
that attempts to pinpoint only one or two ‘jewels’ of the discipline are not viable, or may not
be appropriate, in this field. We propose that it is suitable to investigate a larger number of key
but precise concepts, be they sub-concepts of broad concepts such as OO, or narrow stand-alone
concepts such as ‘user interface architectures’. The challenge associated with such an approach is
determining how many concepts is too many, in order to avoid the problem of a ‘stuffed” curriculum

[9].

5.3 The bumpy road to becoming an ‘expert’ programmer

The suggestion of acquiring a new identity as part of a professional community has been considered
a significant aspect of threshold concept theory in the literature, as it is indicative of transformation
and subjectivity. Nevertheless, we suggest the notion of ‘feeling like an insider’ may be limited
in its capacity to help identify potential threshold concepts in this subject area. The students
themselves did not respond to prompting regarding ‘feeling like a programmer’ and many of the
industry practitioners joked they still didn’t feel like they were a programmer, even after years
of professional experience. Instead, when discussing the notion the practitioners made several
references to seeking validation from their community, suggesting that ‘feeling like an insider’
has more meaning as a social threshold—as found in Wegerif’s work [50]—than a conceptual one.
Social rather than conceptual learning in programming may be an area that deserves further study.

The notion of ‘feeling like a programmer’ is very close to the idea of ‘communities of prac-
tice’ [27]. We know from empirical research in software engineering (e.g., [8, 39]) that ideas of
apprenticeship and legitimate peripheral participation play a role in the workplace learning of
professional developers. In the more formally structured context of most university-level computer-
science courses, these ideas of social learning seem to play a lesser role. It would be interesting to
explore ways in which legitimate peripheral participation can be better integrated into university
teaching of computer science concepts (e.g., through more systematic application of problem-based
learning [12, 17, 24]) and how such a change in teaching would affect students developing a self-
perception as ‘programmers’. Research on newcomer socialisation [3] and learner identity [38] is
beginning to address some of these questions.

5.4 Limitations

We believe our study provides valuable new insights into teaching and learning programming,
and the sampling of practitioners in particular is seen as a significant contribution of this work.
However, we recognize there are some limitations to the generalizability of our findings. Some
of these were unavoidable from a methodological perspective—for example the participants were
self-selecting and the students were sampled from one institution with a mixed ability cohort.
Other possible limitations were because of deliberate decisions on the research design. For example,
all data collection was undertaken by the first author, a non-expert in programming. This could
have affected the direction of the discussions taking place in the focus groups, but it was felt
this was necessary to ensure participants could freely discuss concepts they found troublesome

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:19

without apprehension. Focus groups have been criticised for their ability to produce a ‘group effect’,
where dominant voices suppress a potentially legitimate minority view and for being logistically
difficult to organise [6]. The practical limitations of organising focus groups did mean that we
sampled fewer participants than we would have liked, as it was difficult to arrange for a convenient
time for several people to meet and sometimes participants turned up late, or did not turn up at
all. Nevertheless, we believe focus groups to be the most appropriate method to obtain data that
was representative of the cohort being sampled and related to the more nuanced aspects of the
subject matter. Furthermore, the process of group interaction resulted in some participants critically
reflecting upon assumptions they made regarding concepts they found (or didn’t find) difficult.

A further example of a potential limitation was the use of the concept organization activity as
a prompt for participants, based on concepts covered in the course curriculum. To mitigate the
bias this may have caused, the activity was done after an open discussion with participants where
they were free to consider any concept they found troublesome or transformative. Furthermore,
they were encouraged to include any concepts they considered missing from those offered in the
activity itself. The use of curriculum-based prompts also allowed for discussion by participants as
to why they thought the concept was taught and allowed us to analyze whether they had fully or
partially understood the concept.

An important challenge for the study was the lack of systematic baseline measure of participants’
programming experience. While the differentiation between first year and third year undergraduates
is useful, the lack of such baseline data on a sample so diverse in its nature (as discussed in the
introduction) means we must be cautious in generalizing conclusions about threshold concepts to
other students in the same or similar cohorts. This is further compounded by the fact that some of
the concepts identified, usually the ‘straightforward’ threshold concepts, were a result of consensus
within the focus group, while others arose from one individual’s suggestion within a focus group.
Nevertheless, comparison of the concepts identified within the first-year undergraduate, the third-
year undergraduate and the practitioner focus groups allowed us to find the commonality between
these stakeholders and therefore we argue the concepts offered above can hold a legitimate claim
to be troublesome concepts in programming education, with ‘soft’ transformative aspects (see
Sect. 5.1). Furthermore, the ‘collective’ approach largely mitigated any hindsight bias from the
third-year students and the practitioners, while comparison between the students and practitioners
provided an opportunity to explore which naive versions of knowledge students may have at
different stages in their education.

Some of the concepts identified could themselves be considered rather large at this point. This
is particularly true for ‘data structures’, which is almost as big as the—often criticised—‘object
orientation’. More research will be needed to break up this concept into smaller components (cf.
Sect. 5.2).

A final limitation is methodological: while we have collected data from a wider range of partici-
pants (1st-year students through practitioners) than typically considered in the existing literature,
we have only interacted with each participant once and have only collected self-reported percep-
tions of difficulty. This makes it difficult to extract information about actual difficulty of a given
concept. We have partially mitigated this concern by using focus groups, which have allowed
participants to discuss their assessment of (relative) difficulty of concepts, so that we can report on
a community consensus of concept difficulty. However, a better understanding of concept difficulty
and the development of understanding (including the degree of ‘transformativeness’ of a concept)
can only be achieved using a different methodology—for example, a longitudinal approach using
activity-based data collection (e.g., think-aloud tasks or concept maps [36]). We hope to be able to
undertake such a study in the future.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

5.5 Implications for pedagogy and threshold concept research

The findings produced by this study have built on existing research to identify suitable threshold
concepts within programming education. Suggestions for further research have been threaded
through the discussion section of this paper in response to the limitations of the study, the findings
themselves and the theory with which they were discerned. Some additional implications have
been generated as a result of these discussions, these are discussed in more detail here.

Accidental complexities were an interesting finding in the focus-group data, contributing towards
existing debates regarding tensions between accepted good teaching practice and threshold concepts
and skills [1, 26]. The complexities may have been introduced because of an attempt to provide
students with additional tools and skills which, while in themselves undeniably useful (e.g., learning
to work as a team or using anonymous inner classes when writing event handlers), may actually
cause them difficulties in grasping the main concept at hand. For instance, anonymous inner classes
were considered troublesome by students, who associated them only with event handlers, part of
the identified threshold concept User Interface Architecture. Anonymous inner classes were taught
only in this context. Given that students find both ideas challenging, we recommend that they
should not be taught at the same time. In the most recent iteration of the module, we have removed
explicit teaching of anonymous inner classes, limiting the idea to a “stretch concept” targeting
more advanced students.

In cases where smaller concepts, identified as contributing towards accidental complexity, are
considered essential knowledge for a proficient programmer, there is a strong argument to delay
teaching them until the main threshold concept has been mastered. Further exploration of the
satellite concepts taught alongside identified threshold concepts may reveal additional opportunities
to strip back and simplify the curriculum, using the ‘less is more” approach advocated in other TC
literature [9, 26, 46, 47]. This will allow students to spend more time on the concepts which take
priority and ensure they have successfully traversed their ‘liminal space’. As Sorva [47] points out,
a student who has crossed a threshold is better placed to learn new, related concepts more easily.

Additionally, it seems worth reconsidering which points in the curriculum can be taught as
group work: group work creates its own challenges, combining these with learning a threshold
concept may be a step too far. While there may be strong justification for using a new pedagogical
approach at the same time as introducing a threshold concept, it is argued that the changes this
approach brings or the scale of ‘complexity’ it introduces (e.g., team size, level of independence of
the teams, etc.) can negatively impact on students passing through liminal space.

We suggest that interventions responding to the identification of threshold concepts should
consider the nature of liminal space associated with them. Threshold concepts that are straightfor-
wardly troublesome and transformative have a potentially more observable period of liminality,
thus the amount of additional time given for the acquisition of the concept and removal of accidental
complexities should likewise be more straightforward. Conversely, threshold concepts associated
with partial understanding, where the liminal space is more dynamic, may be more difficult to
factor in. Nevertheless, any intervention should factor additional time to embed the importance of
the threshold concept in question, for students to have experience applying threshold concepts in
a variety of different contexts, and an opportunity to return to them at a later stage to challenge
any naive versions of knowledge. A longitudinal study tracing students’ evolving understanding of
threshold concepts and correlating this with the teaching they have been exposed to would be very
helpful in answering many of these questions. Indeed, our methodological choice of gathering data
from three cohorts at different points in their journey to ‘becoming a programmer’ was strongly
motivated by a desire to capture at least some of this temporal development, which is not usually
done in the existing literature.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:21

The characteristic of “feeling like an insider” is interesting in the context of programming: even
the professional programmers we talked to did not consider themselves “expert programmers”. In
this study, we did not undertake a comparative analysis of the language used by participants at
different stages in talking about individual concepts. Such changes in language are considered an
element of the “feeling like an insider” characteristic [34] and would be very interesting to study in
future research.

Based on our findings and the wider literature on threshold concepts in programming [42],
interesting questions for research remain. In particular, how can the identification of threshold
concepts specifically inform the curriculum and approaches to teaching programming? Does the
order in which concepts are taught make a difference to how challenging they are? How can we best
decide what auxiliary concepts and skills are essential to be taught alongside threshold concepts
and which are just unhelpful noise? What is the role of threshold skills in programming education?
As ever, more research is needed to explore these areas.

6 CONCLUSIONS

This study has expanded on existing research on threshold concepts in programming education
by sampling professional software developers as well as undergraduate students, the former rep-
resenting an as-yet un-investigated population in threshold concept research. In addition to this
methodological contribution, the study proposed four candidates for threshold concepts, identified
through a systematic process of discerning recurring concepts between different stakeholders and
comparing against our theoretical framework. While many of the concepts discussed in the focus
groups were identified as troublesome, only the four put forward above were also considered to be
transformative by one or more of the participant groups. As a result, there is compelling evidence
to suggest that those concepts are suitable candidates for threshold concepts in programming. Of
particular interest are Classes and Inheritance and Abstract Classes, which fall under the area of
Object-Oriented programming (OOP). OOP had previously been identified [41] in the literature
as an area which was too large to be of any significant use as a threshold concept; our findings
contribute more specific sub-concepts of OOP which may be of more help in identifying points in
the curriculum where students may require additional support.

Beyond these concepts, we also contribute to the wider discussion of the suitability of the
threshold-concept lens in programming education. The difficulties we and others have faced in
clearly identifying a set of threshold concepts lead us to ask whether, in particular, the transformative
aspect of the threshold-concept definition is asking too much in the context of programming and will,
invariably, lead to the identification of concepts that are too broad and not useful for the continued
improvement of pedagogical approaches. We have found some indication of ‘soft’ transformation in
our data and argue that this is a good basis for identifying important concepts to be the focus of a
curriculum. However, whether that transformation is big enough to make these concepts ‘threshold’
remains up for debate.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their thorough reading and thoughtful
comments, which helped substantially improve this paper.

REFERENCES

[1] Caroline Baillie, John A Bowden, and Jan H F Meyer. 2012. Threshold capabilities: threshold concepts and knowledge
capability linked through variation theory. Higher Education 65, 2 (June 2012), 227-246.

[2] S.Barradell. 2012. The identification of threshold concepts: a review of theoretical complexities and methodological
challenges. Higher Education 65, 2 (June 2012), 265-276.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

[3] Andrew Begel and Beth Simon. 2008. Novice software developers, all over again. In Proc. 4th Int’l Workshop on

Computing Education Research (ICER’08). 3-14. https://doi.org/10.1145/1404520.1404522

J. Boustedt, A. Eckerdal, R. McCartney, J. E. Mostrém, M. Ratcliffe, K. Sanders, and C. Zander. 2007. Threshold concepts

in computer science: Do they exist and are they useful? ACM SIGCSE Bulletin 39, 1 (March 2007), 504.

[5] Neil C. C. Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart: The Resurgence of Computer
Science in UK Schools. ACM Trans. Comput. Educ. 14, 2, Article 9 (June 2014), 22 pages. https://doi.org/10.1145/2602484

[6] Alan Bryman. 2012. Social Research Methods (4th edition ed.). Oxford University Press.

[7] Michael Clancy. 2004. Misconceptions and Attitudes that Interfere with Learning to Program. In Computer Science
Education Research, Sally A Fincher and Marian Petre (Eds.). Taylor & Francis, London, 85-100.

[8] Alistair Cockburn and Laurie Williams. 2001. The costs and benefits of pair programming. Extreme programming
examined (2001), 223-248.

[9] Glynis Cousin. 2006. An introduction to threshold concepts. Planet 17, 1 (Dec. 2006), 4-5.

[10] P. Davies. 2003. Threshold concepts: How can we recognise them? (2003). Embedding threshold concepts project:
working paper 1.

[11] Martyn Denscombe. 2012. The Good Research Guide: For Small-Scale Social Research Projects (4th edition ed.). McGraw-
Hill Education (UK).

[12] J. Doody. 2009. A Longitudinal Evaluation of the Impact of a Problem-Based Learning Approach to the Teaching of
Software Development in Higher Education. Ph.D. Dissertation. University of Durham.

[13] Anna Eckerdal, Robert McCartney, Jan Erik Mostrom, Mark Ratcliffe, Kate Sanders, and Carol Zander. 2006. Putting
Threshold Concepts into Context in Computer Science Education. In Proc 11th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education (ITICSE’06). ACM, 103-107. https://doi.org/10.1145/1140124.1140154

[14] Anna Eckerdal, Robert McCartney, Jan Erik Mostrom, Mark Ratcliffe, and Carol Zander. 2006. Categorizing student
software designs: Methods, results, and implications. Computer science education 16, 3 (Feb. 2006), 197-209.

[15] Anna Eckerdal, Robert McCartney, Jan Erik Mostrém, Kate Sanders, Lynda Thomas, and Carol Zander. 2007. From
Limen to Lumen: Computing Students in Liminal Spaces. In Proceedings of the Third International Workshop on
Computing Education Research (ICER °07). ACM, New York, NY, USA, 123-132. https://doi.org/10.1145/1288580.1288597

[16] Steve Furber. 2012. Shut down or restart? The way forward for computing in UK schools. Technical Report. The Royal
Society.

[17] M. Garcia-Famoso. 2005. Problem-based learning : a case study in computer science. In International Conference on
Multimedia and ICT in Education. Portugal, 1-5.

[18] Anabela Gomes and Antonio José Mendes. 2007. An Environment to Improve Programming Education. In Proceedings
of the 2007 International Conference on Computer Systems and Technologies (CompSysTech '07). ACM, New York, NY,
USA, Article 88, 6 pages. https://doi.org/10.1145/1330598.1330691

[19] Simon Holland, Robert Griffiths, and Mark Woodman. 1997. Avoiding Object Misconceptions. In Proc 28th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE’97). ACM, 131-134. https://doi.org/10.1145/268084.268132

[20] Janet Hughes and D. Ramanee Peiris. 2006. ASSISTing CS1 Students to Learn: Learning Approaches and Object-oriented
Programming. SIGCSE Bull. 38, 3 (June 2006), 275-279. https://doi.org/10.1145/1140123.1140197

[21] Tony Jenkins and John Davy. 2002. Diversity and Motivation in Introductory Programming. Innovation in Teaching
and Learning in Information and Computer Sciences 1, 1 (2002), 1-9. https://doi.org/10.11120/ital.2002.01010003
arXiv:http://www.tandfonline.com/doi/pdf/10.11120/ital.2002.01010003

[22] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman. 2010. Identifying Student Miscon-
ceptions of Programming. In Proc. 41st ACM Technical Symposium on Computer Science Education (SIGCSE’10). ACM,
107-111. https://doi.org/10.1145/1734263.1734299

[23] G Kamberelis and G Dimitriadis. 2005. Focus groups: Strategic articulations of pedagogy, politics, and inquiry. In
The SAGE Handbook of Qualitative Research (3rd edition ed.), Norman K Denzin and Yvonna S Lincoln (Eds.). Sage
Publications, 887-907.

[24] Judy Kay, Michael Barg, Alan Fekete, Tony Greening, Owen Hollands, Jeffrey H Kingston, and Kate Crawford. 2000.
Problem-Based Learning for Foundation Computer Science Courses. Computer Science Education 10, 2 (2000), 109-128.
https://doi.org/10.1076/0899-3408(200008)10

[25] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. 2005. A Study of the Difficulties of Novice Programmers.
SIGCSE Bull. 37, 3 (June 2005), 14-18. https://doi.org/10.1145/1151954.1067453

[26] Ray Land, Glynis Cousin, Jan H F Meyer, and Peter Davies. 2012. Implications of threshold concepts for course design
and evaluation. In Overcoming barriers to student understanding: threshold concepts and troublesome knowledge, Jan H F
Meyer and Ray Land (Eds.). Routledge.

[27] Jean Lave and Etienne Wenger. 1991. Situated Learning: Legitimate peripheral participation. Cambridge University
Press.

[4

—

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/2602484
https://doi.org/10.1145/1140124.1140154
https://doi.org/10.1145/1288580.1288597
https://doi.org/10.1145/1330598.1330691
https://doi.org/10.1145/268084.268132
https://doi.org/10.1145/1140123.1140197
https://doi.org/10.11120/ital.2002.01010003
http://arxiv.org/abs/http://www.tandfonline.com/doi/pdf/10.11120/ital.2002.01010003
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1076/0899-3408(200008)10
https://doi.org/10.1145/1151954.1067453

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:23

[28] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm, Robert McCartney,

Jan Erik Mostrém, Kate Sanders, Otto Seppald, Beth Simon, and Lynda Thomas. 2004. A Multi-national Study of

Reading and Tracing Skills in Novice Programmers. SIGCSE Bull. 36, 4 (June 2004), 119-150. https://doi.org/10.1145/

1041624.1041673

Robert C. Martin. 2013. Agile Software Development, Principles, Patterns, and Practices. Pearson.

Richard E. Mayer. 1981. The Psychology of How Novices Learn Computer Programming. ACM Comput. Surv. 13, 1

(March 1981), 121-141. https://doi.org/10.1145/356835.356841

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Kolikant, Cary

Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. 2001. A Multi-national, Multi-institutional Study of Assessment

of Programming Skills of First-year CS Students. In Working Group Reports from ITiCSE on Innovation and Technology

in Computer Science Education (ITiCSE-WGR "01). ACM, New York, NY, USA, 125-180. https://doi.org/10.1145/572133.

572137

[32] Jerry Mead, Simon Gray, John Hamer, Richard James, Juha Sorva, Caroline St. Clair, and Lynda Thomas. 2006. A
Cognitive Approach to Identifying Measurable Milestones for Programming Skill Acquisition. SIGCSE Bull. 38, 4 (June
2006), 182-194. https://doi.org/10.1145/1189136.1189185

[33] Jan Meyer and Ray Land. 2003. Threshold concepts and troublesome knowledge: linkages to ways of thinking and
practising. In Improving Student Learning — Theory and Practice Ten Years On, C. Rust (Ed.). Oxford Centre for Staff and
Learning Development (OCSLD), 412-424.

[34] JanH.F. Meyer and Ray Land. 2005. Threshold concepts and troublesome knowledge (2): Epistemological considerations
and a conceptual framework for teaching and learning. Higher Education 49, 3 (2005), 373-388. https://doi.org/10.
1007/510734-004-6779-5

[35] Jan Erik Mostrém, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Kate Sanders, Lynda Thomas, and Carol Zander.

2008. Concrete Examples of Abstraction As Manifested in Students’ Transformative Experiences. In Proc. 4th Int’l

Workshop on Computing Education Research (ICER °08). ACM, New York, NY, USA, 125-136. https://doi.org/10.1145/

1404520.1404533

Andreas Michael Miihling. 2014. Investigating Knowledge Structures in Computer Science Education. PhD thesis.

Technische Universitidt Miinchen, Germany.

[37] M. Pedroni, B. Meyer, and M. Oriol. 2009. What do beginning CS majors know? Technical Report 631. ETH Ziirich,
Chair of Software Engineering.

[38] Anne-Kathrin Peters. 2018. Students’ Experience of Participation in a Discipline: A Longitudinal Study of Computer
Science and IT Engineering Students. ACM Trans. Comput. Educ. 19, 1 (2018), 5:1-5:28. https://doi.org/10.1145/3230011

[39] Laura Plonka, Helen Sharp, Janet Van der Linden, and Yvonne Dittrich. 2015. Knowledge transfer in pair programming:
An in-depth analysis. International Journal of Human Computer Studies 73 (2015), 66-78. https://doi.org/10.1016/j.ijhcs.
2014.09.001

[40] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and Teaching Programming: A Review
and Discussion. Computer Science Education 13, 2 (2003), 137-172. https://doi.org/10.1076/csed.13.2.137.14200
arXiv:http://www.tandfonline.com/doi/pdf/10.1076/csed.13.2.137.14200

[41] Janet Rountree and Nathan Rountree. 2009. Issues Regarding Threshold Concepts in Computer Science. In Proc. 11th

Australasian Conference on Computing Education - Volume 95 (ACE °09). Australian Computer Society, Inc., Darlinghurst,

Australia, Australia, 139-146. http://dl.acm.org/citation.cfm?id=1862712.1862733

Kate Sanders and Robert McCartney. 2016. Threshold Concepts in Computing: Past, Present, and Future. In Proc. 16th

Koli Calling Int’l Conference on Computing Education Research (Koli Calling ’16). ACM, New York, NY, USA, 91-100.

https://doi.org/10.1145/2999541.2999546

[43] Dermot Shinners-Kennedy and Sally Fincher. 2015. Scaffolded autoethnography: a method for examining practice-to-
research. In 6th Research in Engineering Education Symposium. http://kar.kent.ac.uk/51057/

[44] Dermot Shinners-Kennedy and Sally A. Fincher. 2013. Identifying Threshold Concepts: From Dead End to a New
Direction. In Proc. 9th Annual Int’l ACM Conf. on International Computing Education Research (ICER ’13). ACM, 9-18.
https://doi.org/10.1145/2493394.2493396

[45] Ven Yu Sien and David Weng Kwai Chong. 2011. Threshold Concepts in Object-Oriented Modelling. In 7th Educators’
Symposium, MODELS 2011: Software Modeling in Education. 1-11.

[46] Juha Sorva. 2010. Reflections on threshold concepts in computer programming and beyond. In 10th Koli Calling
International Conference. ACM Press, 21-30.

[47] Juha Sorva. 2013. Notional machines and introductory programming education. ACM Transactions on Computing
Education 13, 2 (June 2013), 1-31.

[48] The Royal Society. 2017. After the Reboot: computing education in UK schools. Royal Society report. (Nov. 2017).
https://royalsociety.org/~/media/policy/projects/computing-education/computing-education-report.pdf

[29
[30

[N

[31

—

[36

—

[42

—

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/356835.356841
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/1189136.1189185
https://doi.org/10.1007/s10734-004-6779-5
https://doi.org/10.1007/s10734-004-6779-5
https://doi.org/10.1145/1404520.1404533
https://doi.org/10.1145/1404520.1404533
https://doi.org/10.1145/3230011
https://doi.org/10.1016/j.ijhcs.2014.09.001
https://doi.org/10.1016/j.ijhcs.2014.09.001
https://doi.org/10.1076/csed.13.2.137.14200
http://arxiv.org/abs/http://www.tandfonline.com/doi/pdf/10.1076/csed.13.2.137.14200
http://dl.acm.org/citation.cfm?id=1862712.1862733
https://doi.org/10.1145/2999541.2999546
http://kar.kent.ac.uk/51057/
https://doi.org/10.1145/2493394.2493396
https://royalsociety.org/~/media/policy/projects/computing-education/computing-education-report.pdf

1:24 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

[49] Lynda Thomas, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan-Erik Mostrom, Kate Sanders, and Carol Zander.
2014. A broader threshold: Including skills as well as concepts in computing education. In National Academy’s 6th
Annual Conf. and the 4th Biennial Threshold Concepts Conf. (NAIRTL 14). 154-158.

[50] Rupert Wegerif. 1998. The Social dimension of asynchronous learning networks. Journal of Asynchronous Learning
Networks 2 (1998), 34—49.

[51] Carol Zander, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan Erik Mostrom, Mark Ratcliffe, and Kate Sanders.
2008. Threshold Concepts in Computer Science: a multinational empirical investigation. In Threshold Concepts within
the Disciplines. Sense Publishers, Rotterdam, 105-118. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-15763

A FOCUS GROUP PROMPTS

The following is an indicative list of prompts used during the focus groups. The focus groups with
professional developers were undertaken after those with students and we adjusted the questions
to provide linkage between both parts of the study. We also used different kinds of questions with
professional developers to accommodate for differences in context and expected level of experience.

e Student focus groups:
(1) Could you give me an idea of the sort of experience you have had with programming before
starting the course?
(2) Which are your favourite parts of programming?
(3) Which are your least favourite aspects?
(4) Which aspects of programming would you say you would like more help with?
(5) What would you change about the course with regard to programming?
(6) How good would you say you are at programming?
e Professional developer groups:
(1) Can you give a brief explanation of your experience of programming, including whether
you learned it at university or otherwise?
(2) Any concepts that you got particularly stuck on?
(3) Did you ever use concepts where you simply copied what you had seen, only later under-
standing them properly (or perhaps not at all?)
(4) What were the ideas or concepts in programming that, once you had grasped them, made
you think and feel as a ‘proper’ programmer?
(5) In the focus groups, students identified (insert appropriate potential threshold concept) as
a particularly challenging/useful topic area. What are your thoughts on this?
(6) Which aspects of object-orientation (insert other appropriate potential threshold concept)
would you say are particularly troublesome to grasp/provided a significant shift in your
understanding of programming?

B CARD TOPICS PROVIDED
The following is a list, in alphabetical order, of concepts used in the sorting exercise component of
the focus groups. These were based on the programming curriculum for first year undergraduates
at King’s:

e Abstract Classes

e Arrays (Data Structures)

e Assignments

e Class Diagram Notation

e Classes and Inheritance

e Code Organisation

e Conditional Statements

e Console Output

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-15763

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:25

e Debugging

o Designing Objects

e Encapsulation

e Exceptions

e Getting from a Problem to a Program
e IDEs

o Interfaces

e Java Concepts for GUI Programming
e Layout Management Concepts

e Lists (Data Structures)

e Loop Statements

o Modelling Real-World Entities

e Packages

e Processing Numeric Data

e Reading Input Strings

e Regular Expressions

o User Interface Architectures

e Variables, References, Objects

e Version Control

C OCCURRENCES OF CONCEPTS IN THE DATA

In this appendix, we quantitatively summarise our data on candidate concepts based on the coding
of all focus group transcripts as well as of photographs taken of the results of the card-sorting
activity.

Table 3 summarises the occurrence counts of data coded for any potential candidate concepts
throughout all our data, separated into occurrences during the free discussion and occurrences
during the sorting activity. Note that this is occurrence data only, any specific occurrence may
or may not be related to the concept being troublesome or transformative. It can be seen that a
number of concepts came up during the free discussion already, before participants received more
direct prompts from the card-sorting activity.

Table 4 shows the concepts that were introduced by participants during the card-sorting activity.
These are concepts that were not on one of the cards provided, but where participants felt the need
to add a new card with the concept on it. Overall, this was a rare occurrence. Note that only some
of these concepts also show up in the transcript annotations, because not all of them were actually
talked about by the participants.

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 Lucy Yeomans, Steffen Zschaler, and Kelly Coate

Table 3. Occurrence counts of potential candidate concepts coded throughout the data. For each focus group,
the ‘Free’ column indicates the number of occurrences of codes for the concept before the card-sorting activity,
while the ‘Sorting’ column indicates the number of occurrences during the card-sorting activity.

UG Y1 Group 1
UG Y1 Group 2
UG Y1 Group 3
g
£

Practitioners

Concept

Abstract Classes

Abstraction

Algorithms and ‘big O’ notation
Class Diagram Notation

Classes and inheritance
Concurrency

Data structures

Designing objects

Encapsulation

Exceptions

IDEs

Interfaces

Java concepts for GUI programming
Layout Management Concepts
Modelling Real World Entities
Moving from a problem to a solution
Object-oriented programming
Packages

Polymorphism

Recursion

Regular Expressions

User Interface Architectures
Variables, References and Objects
Version Control

H O OO WOORNOOOOOOO O RO = O O W O Free
NOHWMHNNOOD—‘ONP—‘ONHOU’IP—‘O%ONSorting
COO0O0O0OONNOOROOOOOO OO O O O O Free
~ O - MONOOOONOOORONS O WS OO O Sorting
C 0000000000000 O0O0O0 00O OO O O Free
WO R mOORHOROOWO OO O OO WO oS S Sorting
C 0000000000000 00O0 00O OO O O Free
N O OO RO OO WN SO = O N O S N Sorting
OO0 0000000000000 0 00O OO O O Free
®WOOOONOOOOO =m0 WO = = OO = Sorting
HO OO WO OWIR OO OO0 O RO O O O Free
— 00T UT W = WO R W UGl a0 w ok © wi| Sorting
R — 00 uUloouulon Ul m W WO wmwhawoasws s alOverall

—_
—_

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Transformative and Troublesome? Perspectives on difficult concepts in programming 1:27

Table 4. Concepts introduced during the card-sorting activity. A 1in a column indicates that the participants
added a new card with this concept during their card-sorting activity

— N N
2 58 5
¢ © © ©
= R R v
e O OO0
H o= = —= o
B
g0 000 3
Concept AP PP P E
Polymorphism 110 0 0 2
Reading and writing files 00 01 01
External APIs 00 0101
Algorithms and ‘big O’ notation [1 0 0 0 0 1
Concurrency 10 0 0 01
Functional programming 1.0 0 0 01
Recursion 10 0 0 01

ACM Transactions on Computing Education, Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Theoretical approaches to student learning in programming
	2.1 Threshold Concepts
	2.2 Threshold Concepts in Programming Education
	2.3 Theoretical Framework

	3 Methodology
	3.1 Participants
	3.2 Methods
	3.3 Analysis

	4 Findings
	4.1 Candidate Threshold Concepts
	4.2 Additional Findings

	5 Discussion
	5.1 The challenges of defining threshold concepts
	5.2 `Broadness' or `granularity' of threshold concepts?
	5.3 The bumpy road to becoming an `expert' programmer
	5.4 Limitations
	5.5 Implications for pedagogy and threshold concept research

	6 Conclusions
	References
	A Focus group prompts
	B Card topics provided
	C Occurrences of concepts in the data

