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Abstract

This paper provides a solution to the TTC 2014 FIXML study case.
The case requires the implementation of a relatively straightforward map-
ping from XML messages in the FIXML format to a set of source files
implementing the schema of such a message and, optionally, an instantia-
tion with the data from the message. There is a requirement for producing
code in a range of programming languages.

The biggest challenge for transformation design in this study case is
the fact that the same tag may occur in multiple places in the FIXML
message, but with a different set of attributes. The generator is required
to merge all of these occurrences into a single representation in the gen-
erated code. We demonstrate how the use of symmetric, language-aware
code generators relieves the transformation developer almost entirely from
any consideration for this requirement. As a result, the transformation
specifications we have written are extremely straightforward and simple.
We present generation to Java and C#.

1 Introduction

FIXML is a language used in the financial sector to express financial-transaction
information for machine-to-machine communication in electronic trading. For
convenience of processing it is useful to implement object-oriented wrappers
that are used in end-point systems when reading, constructing, and manipulat-
ing FIXML messages. It is possible to introduce new and custom formats for
messages and this happens frequently.

The study case asks for implementations of code generators that produce
wrapper classes given a specific FIXML message. There are, thus, two parts to
the problem posed: 1) to extract the message schema and 2) to generate class
code implementing this schema. The case description does, consequently, ask
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for the solution to be broken down into two major phases (with an initialisation
phase for reading the XML document): 1) extracting the schema into an instance
of a programming-language meta-model and 2) generation of source code from
the model thus created.

The code-generation phase is almost trivial to implement as it effectively
amounts to a textbook case of class-diagram to class-skeleton generation. Schema
extraction is a little bit more interesting in that it requires the merging of infor-
mation from different parts of the XML document: Tags of the same name can
occur in different places of the document, but with a different set of attributes
and sub-nodes.

In our implementation, there are two design decisions that are worth noting:

1. We use symmetric language-aware aspects [6, 7] in the implementation of
our code-generation templates, obviating almost completely the need for
any special consideration of the need for merging in schema extraction;
and

2. We use a completely target-language independent meta-model of classes
and attributes (i.e., of the schema). In fact, because of our use of sym-
metric aspects, our meta-model does not need to insist on uniqueness of
class names and becomes an object model of the FIXML message rather
than the extracted schema only. This enables us to easily generate a test
method instantiating our generated classes with exactly the data from the
given FIXML message.

Our implementation is based on Epsilon [2–5] with our own extensions for
symmetric aspects in code generation [6, 7].

The remainder of this paper is structured as follows: We first review some
background on symmetric, language-aware code generation in Sect. 2. Section 3
discusses the key points of our solution. Section 4 briefly discusses the results
from the test runs required, before Sect. 5 presents metrics for our implemen-
tation.

2 Symmetric Aspects for Code Generation

In [6, 7], we have introduced symmetric, language-aware aspects for code-gene-
ration templates to enable advanced modularity for code-generation templates.
Detailed descriptions are in these papers, but we give a brief summary here to
simplify understanding of our solution to the TTC 2014 FIXML case.

Figure 1 shows an overview of the infrastructure for code generation with
symmetric aspects. Crucially, results from the interpretation of code-generation
templates are not directly written to a file, but are centrally registered against
the name of the file they are meant to produce. Later, all texts registered against
the same file name are merged before they are finally written to disk.

For the merging step, we use an implementation of superimposition; specifi-
cally, FeatureHouse [1]. FeatureHouse comes with our implementation by
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Figure 1: Infrastructure for symmetric, language-aware aspects for code-
generation (from [6])

default, but other merging strategies can be implemented and provided. Fea-
tureHouse merges two texts in two steps: First, the texts are parsed using a
coarse-grained grammar for the particular language they are written in. The
aim is to extract named entities in the code; details of the implementation (e.g.,
method bodies) are kept as opaque blocks of code. Two such feature-structure
trees are then combined by merging the contents of nodes of the same name.
Where these contents are opaque blocks, FeatureHouse calls out to language-
specific semantic merge operators. For example, two Java method bodies are
merged by inserting the second in any place where the first mentions the special
invocation of ‘origin()’.

As a result, more than one code-generation template can contribute to a
given file. If each template is written to be computationally complete, they can
be swapped in or out of a transformation workflow completely independently
of each other, giving great flexibility for transformation reuse, but also for de-
bugging. Because the templates are standard generation templates (written in
EGL [5] in our case), they can alternatively also be run by the standard EGL
engine and the result written to disk directly, making it accessible for debugging.

Symmetric language-aware aspects for code generation have been imple-
mented as an extension to EGL and are available from EpsilonLabs.1

3 Solution

We first describe the complete solution for generating Java code, before dis-
cussing the changes needed for generating C# code.

1EpsilonLabs is available at http://epsilonlabs.googlecode.com/. The update site for
the symmetric aspects for code-generation plugins is http://epsilonlabs.googlecode.com/

svn/trunk/org.eclipse.epsilon.egl.symmetric_ao.updatesite.
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Figure 2: Transformation architecture. Boxes correspond to artefacts (with
their language expressed after a colon or using an <<instance-of>> relation)
and arrows describe transformations

3.1 Transformation to Java

Figure 2 gives an overview of the complete transformation architecture imple-
mented for generating Java code from FIXML messages. In a first step, the
XML is parsed and translated into an instance of the XML metamodel defined
by the task specification. This model is then translated into a model of classes
and attributes, before code is finally generated. In the following, we will discuss
each of these steps in some more detail.

3.1.1 LoadXML

The case specification provided a meta-model for XML documents and required
that transformation architectures use this as a intermediary storage format for
the FIXML message to be processed. We have encoded the given meta-model in
Ecore and have written a simple EOL [2] program to parse XML documents into
instances of this meta-model. This is simplified by the fact that Epsilon already
comes with an XML parser, called a model driver, exposing the contents of an
XML file to model-management operations through a naming convention [4].
The complete EOL program for LoadXML can be found in Listing 1.

3.1.2 XMLToClass

As a next step, we need to extract the message schema from the concrete message
given. In our implementation, this amounts to a very straightforward copying
of the XML model into a model of classes and their attributes, differentiating
between string-typed and class-typed attributes.2 The resulting model does not
actually describe a schema, but represents the actual object structure of the
message given. The only change made at this step is for the transformation to
ensure that attribute names are unique within an object (although not neces-
sarily between different objects of the same class). This will work together with

2Here we would also do any type analysis if we were providing a solution for that additional
requirement.
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Listing 1: LoadXML implementation in EOL

generateFor (XMLDoc.root);

operation generateFor (e : Element) : XML!XMLNode {

var node : XML!XMLNode = new XML!XMLNode;

node.tag = e.tagName;

if (e.getAttributes (). length > 0) {

for (idx in Sequence {1..e.getAttributes (). length }) {

var attr = e.getAttributes (). item (idx - 1);

var xmlAttr : XML!XMLAttribute = new XML!XMLAttribute;

node.attributes = node.attributes ->including (xmlAttr );

xmlAttr.name = attr.nodeName;

xmlAttr.value = attr.nodeValue;

}

}

for (elt in e.children) {

node.subnodes = node.subnodes

->including (generateFor (elt ));

}

return node;

}

5



DataType 

Model 

Class 
topClass 1 Attribute 

name : String 
value : String attributes 

* 

Type 
name : String 

type 

1 

Figure 3: Class meta-model diagram

name-based merging to ensure generation of minimal code. Additionally, we
also keep track of the top-level element in the object structure.

This transformation is written in ETL [3] and produces instances of the meta-
model shown in Fig. 3. The code of the transformation is shown in Listings 2
and 3.

It is worth noting that the transformation does not actually merge different
occurrences of the a tag of the same name into one class definition in the class
model. As a result, the model produced may contain multiple classes of the
same name. Their definitions will be merged automatically once code has been
generated.

3.1.3 ClassToJava

The final step of the transformation chain produces Java code from the class
model. The template is written in EGL and is extremely straightforward. It
consists of a controller template (cf. Listing 4) that instantiates a second tem-
plate for every class in the model. That second template (cf. Listing 5) simply
generates a class skeleton including all attributes and references as well as a
default constructor and a constructor for the attributes and references found.

Note that the name of the file to generate is derived from the name of
the class in Listing 4. This may lead to multiple versions of the same file being
generated. However, the build workflow shown in Listing 6 invokes the template
using eglRegister rather than egl, thus registering all generated code in the
central registry. Only the call to eglMerge combines all code produced for a
particular class. Because elements of the same name are unified in the merging
process, the requirement of the study case is implicitly satisfied.

Because of this ability to merge different generated code, we were also able
to provide a modular definition of an additional feature, namely the generation
of a main method showing how to instantiate the classes created to represent
the FIXML message from which it was generated. To this end, we defined
two separate code-generation templates: the first (cf. Listing 7) is a controller
template identifying the top class in a given class model and invoking the second
template for this class. The second template (cf. Listing 8) then generates
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Listing 2: XMLtoClass implementation in ETL

pre {

var STRING_TYPE : Classes!DataType = new Classes!DataType;

STRING_TYPE.name = "String";

}

rule NodeToClass

transform s : XML!XMLNode

to t : Classes!Class {

t.name = s.tag;

var uniqueID = new Map;

for (attr in s.attributes) {

var newAttr = attr.equivalent ();

newAttr.name = newAttr.name.getUniqueVersion(uniqueID );

t.attributes = t.attributes ->including (newAttr );

}

for (elt in s.subnodes) {

var attr : Classes!Attribute = new Classes!Attribute;

t.attributes = t.attributes ->including(attr);

attr.name = elt.tag.getUniqueVersion(uniqueID );

attr.type ::= elt;

}

}

rule AttrToAttr

transform s : XML!XMLAttribute

to t : Classes!Attribute {

t.name = s.name;

t.value = s.value;

t.type = STRING_TYPE;

}

post {

var mdl : Classes!Model = new Classes!Model;

mdl.topClass ::= getTopNode ();

}
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Listing 3: XMLtoClass implementation in ETL (ctd.)

operation getTopNode () : XML!XMLNode {

var resultSet = XML!XMLNode.all;

for (node in XML!XMLNode.all) {

resultSet = resultSet ->excludingAll (node.subnodes );

}

return resultSet.random ();

}

operation String getUniqueVersion(uniqueID) : String {

var result : Integer = 0;

if (uniqueID.containsKey(self)) {

result = uniqueID.get(self);

uniqueID.put(self , result + 1);

}

else {

uniqueID.put(self , 1);

}

return self + result;

}

Listing 4: ClassToJava controller template

[%

for (cl in Model!Class.all ()) {

var t := TemplateFactory.load(’JavaOneClass.egl’);

t.populate (’currentClass ’, cl);

t.generate (tgtdir + cl.name + ’.java’);

}

%]
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Listing 5: ClassToJava per-class template

package [%= pck %];

public class [%= currentClass.name%] {

[%

for (prop : Model!Attribute in currentClass.attributes) {

%]

private [%= prop.type.name%] [%= prop.name%] =

[%if (prop.type.isKindOf(Model!DataType )) {

%] "[%= prop.value %]" [%

} else {

%] new [%= prop.type.name%] ()[%}%];

[%

}

%]

public [%= currentClass.name %]() {}

[%if ((not currentClass.attributes ->isEmpty ()) and

// Java is not happy with too many parameters

(currentClass.attributes ->size() <= 200)) {%]

public [%= currentClass.name %]([%

var first = true;

for (prop : Model!Attribute in currentClass.attributes) {

if (not first) {%], [%}

else {first = false ;}

%][%= prop.type.name%] [%= prop.name %][%

}%]) {

[%

for (prop : Model!Attribute in

currentClass.attributes) {

%] this .[%= prop.name%] = [%= prop.name %];

[%}%]

}

[%}%]

}
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Listing 6: Build workflow

...

<target name="generate -java" depends="generate -general">

<epsilon.eglRegister

src="transformations/java/GenerateMain.egl">

<model ref="classes" as="Model"/>

<parameter name="tgtdir" value="${generate -tgt}/java/"/>

<parameter name="pck" value="${ tgtsubdir }.java"/>

</epsilon.eglRegister >

<epsilon.eglRegister

src="transformations/java/ToJava.egl">

<model ref="classes" as="Model"/>

<parameter name="tgtdir" value="${generate -tgt}/java/"/>

<parameter name="pck" value="${ tgtsubdir }.java"/>

</epsilon.eglRegister >

<epsilon.eglMerge >

<file>

<include name="${generate -tgt}/java /*. java" />

<superimpose artifactHandler="java15" />

</file>

</epsilon.eglMerge >

</target >

...
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Listing 7: Java main method controller template

[%

for (mdl in Model!Model) {

var t := TemplateFactory.load(’JavaMainMethod.egl’);

t.populate (’currentClass ’, mdl.topClass );

t.generate (tgtdir + mdl.topClass.name + ’.java’);

}

%]

an empty class body with only a main method with a recursively constructed
constructor call in it. Note that because of a limitation in Java we are not
generating custom constructors when there are more than 200 attributes in a
class. This is to avoid compilation errors, because there is a maximum number
of parameters that can be passed to a constructor. Alternatively, we could have
translated such large repetition of attributes (as occurs, for example, in test case
6) into arrays. However, that would have been a deviation from the prescribed
behaviour.

3.2 Transformation to C#

C# and Java are quite similar programming languages. The syntax of both
languages is based on C/C++. They are both object-oriented and strongly
typed languages. In general, the overall structure of C# and Java are almost
identical for this FIXML transformation. The only real difference is the need to
use ‘using System;’ at the beginning of each file to allow for the use of upper-case
‘String’ as a type name.

Because neither the class model nor the XML model contain any information
specific to the target language, the early transformations can be kept unchanged.
Only the final code-generation needs to be adjusted by 1) using the C#-specific
template and 2) changing the language handler for the invocation of eglMerge to
csharp. Language handlers encapsulate language-specific information like the
feature-structure grammar and semantic merge-operators for unparsed blocks.
A C# language handler did not exist in the original version of symmetric aspects
for code generation as presented in [6, 7]. However, as the architectures of
the generation infrastructure and the underlying FeatureHouse system are
designed to be extensible, adding one was a matter of a few minutes.

4 Test runs

Eight test cases, all in xml format, were provided as inputs for this transforma-
tion. Amongst the test cases there were files which were deliberately wrong in
order to check whether the transformation solution could detect such cases and
give appropriate error messages. For this transformation, we have managed to

11



Listing 8: Java main method template

package [%= pck %];

public class [%= currentClass.name%] {

public static void main (String [] args) {

[%= currentClass.name%] top

= [%= currentClass.generateConstructorCall ()%];

}

}

[%

operation Model!Class generateConstructorCall () : String {

var result : String = "new " + self.name + " (";

// Java doesn ’t like too many parameters

if (self.attributes ->size() <= 200) {

var first = true;

for (attr in self.attributes) {

if (not first) {

result = result + ", ";

}

else {

first = false;

}

if (attr.type.isKindOf(Model!DataType )) {

result = result + ’"’ + attr.value + ’"’;

}

else {

result = result +

attr.type.generateConstructorCall ();

}

}

}

result = result + ")";

return result;

}

%]

12



TestCase 3: [epsilon.xml.loadModel] [Fatal Error]

test3.xml:25:3: The element type "Order" must

be terminated by the matching end-tag "</Order>".
TestCase 7: [epsilon.xml.loadModel] [Fatal Error]

test7.xml:14:12: The element type "Sndr" must

be terminated by the matching end-tag "</Sndr>".
TestCase 8: [epsilon.xml.loadModel] [Fatal Error]

test8.xml:19:10: The element type "Hdr" must be

terminated by the matching end-tag "</Hdr>".

Table 1: Error messages

produce the correct output as the result of the transformations. All test cases
were validated manually and compared to the output result by another approach
(UML-RSDS). Test cases 3, 7 and 8 did not have the right XML format. The
respective error messages are shown in Table 1. These errors are all caught by
the XML driver for Epsilon [4] already.

5 Metrics

Tables 2 and 3 show the results for the various metrics requested in the case
specification.

6 Conclusions and Outlook

We have presented a solution to the TTC 2014 FIXML case using symmetric
aspects for code generation. The key feature of our solution is that our imple-
mentation could be largely built language independently and with almost no
concern for schema derivation issues. We have not implemented the generator
for C++. However, this could be easily realised following the same ideas by
adding an appropriate set of code-generator templates.
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