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ABSTRACT

For emergency departments (EDs) to maintain sustainable care of patients, hospital management must
continually explore potential interventions to clinical practice. Agent-based modelling (ABM) can be a
valuable tool to support this planning in a controlled environment. Existing approaches to ABM development
are best suited for one-off models. However, conditions in EDs can change frequently, making the use of
one-off models infeasible. Decision-makers must be able to trust simulations appropriately for them to
be effective in intervention exploration. Domain-specific modelling languages (DSMLs) can address these
challenges by offering a reusable library of appropriately abstract, domain-familiar, modelling concepts
across case studies and automatic translation of these concepts into executable models. In this paper, we
present a DSML to support repeated modelling exercises in the ED domain and illustrate the use and reuse
of this DSML across two concrete case studies in London-based NHS emergency departments.

1 INTRODUCTION

EDs must run 24/7 and cater for a wide array of emergency, unscheduled, patient visits. In the UK,
the NHS continually monitor the resilience of Trust EDs to adverse factors including infectious diseases,
patient attendance rises, and resource availability (England 2022). EDs must constantly evolve to keep up
with demand, however, evaluating potential interventions to clinical practice can be complex due to the
safety-critical nature of the ED. Particularly if there is limited evidence to support an intervention, it may
be difficult to justify the risks of conducting real-world trials.

ABMs can help support the evaluation of an intervention without impacting the real system. Interventions
can be replicated within a model and experimented with in order to evaluate their potential beyond what
may be possible, or safe, in the real world (Peck 2004). By exploring models under varying conditions,
users can determine the resiliency of potential interventions before enacting any real-world changes. For
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simulation to be effective in the healthcare domain, however, it is important that models can be developed
rapidly, and be seen with credibility.

DSMLs can address these challenges by implementing models using high-abstraction statements that are
familiar to members of the target domain rather than with generic statements such as with general-purpose
programming languages (Fowler 2010). The abstract syntax of a DSML defines the meta-model of language
concepts that can be instantiated to capture domain processes and the concrete syntax defines how these
language concepts are presented to the user. With a DSML, domain stakeholders can directly collaborate on
model implementations which can be automatically generated into computer-readable code. In this paper,
we present a healthcare-based DSML developed in collaboration with healthcare professionals from NHS
Hospitals.

In this paper, we make the following contributions:

• We present a novel family of DSMLs capturing relevant aspects of work in the ED domain.
• We show how models in these DSMLs can be automatically translated into agent-based simulations.
• We demonstrate the usefulness and reusability of the DSMLs in two case studies.

In section 3 we present the design of our healthcare DSML, using a real-world case study model as a
running example. In section 4 we then discuss two case studies to illustrate the use of our DSML across
different modelling instances. In section 5 we call upon our experience from the case studies and refer
back to the requirements discussed in section 3 to evaluate our DSML.

2 RELATED WORK

Abar et al. provide an excellent review of the state-of-the-art of agent-based modelling languages and tools,
mapping eighty-five ABM toolkits according to their modelling capabilities and their required modelling
effort (Abar et al. 2017). The reviewed tools are designed for a wide scope of target domains from generic
social systems to engineering, economics, biology, etc. and are written in a range of implementation
languages from general-purpose programming languages such as Java and C to custom languages such as
FlexScript for FlexSim (Nordgren 2003). Across the current ABM toolkits, however, models are typically
written from an agent perspective. Model developers are required to define models according to the
properties and interactions of individual agents, mapping their knowledge of high-level domain processes
to low-level, granular, process descriptions. This abstraction process can be complex, time-consuming,
alienating to domain experts, and therefore prone to error.

While some modelling tools, such as AnyLogic (Borshchev 2014), offer domain-appropriate, some-
times graphical, notations which are often more accessible than general-purpose programming code, these
languages are not suitable for our target domain as they do not appropriately hide the technical complexity
of model implementations and/or use healthcare-specific syntax. For example, FlexSim does include a
healthcare module with domain-appropriate process templates, however, the model definitions still use
terms such as ‘token’, ‘state’, ‘event trigger’ and ‘process flow’ inherited from event-driven modelling
terminologies. The low abstraction level of languages such as these can make the reuse and maintenance
of models challenging (Polack and Alden 2020). Instead, implementing models with modular, high-level
statements (such as in a DSML) can make maintenance easier— allowing the modification of individual
components without affecting the overall structure of the model.

The work of Parunak (Parunak 2021) closely matches our vision for domain-appropriate modelling
languages. Their DSML for defence modelling uses a variety of technologies including spreadsheets
to capture problem descriptions, from which they can automatically generate executable ABMs. The
high-abstraction DSML requires less of a mental shift for domain experts to understand and manipulate
models themselves. The current work applies a similar approach to the healthcare domain and employs
explicit model-driven engineering processes in our DSML development.
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3 A FAMILY OF HEALTHCARE MODELLING LANGUAGES

We began a collaboration with St Thomas Hospital ED in October 2020 with the aim of introducing ABM
to support decision-making on infection control practices. The fast-paced nature of healthcare interventions
meant that our models needed to be developed within short time frames, and because ABM was new to
the department, we needed to establish a suitable degree of credibility for our simulations. To facilitate
these requirements our DSML needed to meet the following criteria:

1. The DSML must have sufficient scope so as to capture emergency department healthcare processes.
2. The DSML must have sufficient generalisability to be reused across different modelling case studies

in the domain.
3. The DSML must facilitate the timely production, and refactoring, of models
4. The DSML must expose an accessible and usable language syntax for our domain experts such that

they could read and understand models without intervention.

We based our language on a pre-existing information format used in the hospital, called action cards.
Action cards describe the processes staff should complete during patient treatment via flowcharts. Senior
clinicians will draft action cards and publish them for staff to access on the Trust Intranet. We analysed
some existing action cards to understand the domain concepts being captured and how these concepts were
presented. Action cards explicitly capture information such as the order of treatments and decision points
for staff. An example action card is shown in Figure 1. Figure 2: Lateral flow

 testing algorithm
 

 

 
 

Figure 1: A real-world action card example.

For the purposes of implementing a model of domain processes, it is necessary for us to explicitly encode
properties in our DSML that are left implicit in action cards. For example: required staff types, action
duration, and the ED layout. The diverse range of domain information needed to model ED processes
led us to divide our DSML definition into modular packages as shown in Figure 2. Each package is
responsible for orthogonal domain processes. The action card module is responsible for defining high-level
global processes. The people module is responsible for capturing the properties of staff and patients. The
disease module is responsible for defining the properties of diseases, their prevalence, spread properties,
and the tests used to detect diseases. The built environment language is responsible for defining the physical
layout of the hospital, including the definition of rooms and resources. Finally, the agent language is an
intermediary, agent-oriented, DSML designed to subdivide the model generation process.

In the following section, we will discuss the meta-model of our DSML alongside a case study: The
investigation of alternative testing pathways for COVID-19 in St. Thomas’ Hospital ED.
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Figure 2: The DSML structure.

Figure 3: The healthcare DSML modules.

3.1 COVID-19 Case Study

The management of COVID-19 in St. Thomas’ ED has been an ongoing concern. It is vital that infectious
patients are identified early to reduce the risk of disease spread to others. If the patient is to be admitted
to the wider hospital wards, it is especially important that patients have been accurately diagnosed to
ensure they are cohorted appropriately with other patients. Outbreaks of COVID-19 can result in costly
and potentially dangerous closures of entire wards in the hospital.

Three types of tests were used in 2020 for detection of COVID-19. Lateral flow tests (LFT) have a
lower accuracy but can be completed at the patient bedside and can produce results within 20 minutes.
Rapid-PCR tests have high accuracy but need to be processed in analyser machines, in batches, for 30
to 45 minutes. Lab-based PCR tests offer highly-accurate testing but have significantly slower response
times due to them being processed in a separate laboratory in the hospital. Lab-based PCR tests are often
referred to as ‘confirmatory tests’ due to their higher accuracy.

Hospital admission wards were divided into bays according to COVID-19 infectious status. Red bays
were for patients who had received confirmatory positive test results for COVID-19 and Green bays were
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(a) Action card DSML concrete syntax. (b) Built environment DSML concrete syntax.

Figure 4: Example models.

for patients who had received confirmatory negative test results. Amber bays were for patients who had
received a negative COVID-19 result but were still awaiting a confirmatory test. A very limited number
of isolated Side Rooms were available for undetermined cases or for patients with more severe health
complications.

In early 2021, as COVID-19 prevalence was predicted to decrease, the ED were interested in exploring
potential action cards with the aim of reducing the use of different test types while minimising potential
risks to patient safety. The aim of our model was to compare two prospective action cards to the current
pathway. In the current pathway, LFTs, rapid-PCR, and lab-based PCR tests were all used. In the first
prospective action card, LFTs are removed, and in the second prospective action card, rapid-PCR testing
is removed. We wished to compare the directional changes in key performance indicators (KPIs) across
the different action cards: 1. The percentage chance of a COVID-19-positive patient being admitted to an
amber bay, 2. The number of LFT, rapid-PCR, and Lab-based PCR tests used per day, and 3. The average
patient length of stay (LoS).

3.2 Action Card Module

Shown in the top-right of Figure 3: The ActionCard concept contains a set of I_Components for
capturing action cards. Actions represent individual steps of global processes in the hospital (such
as administering a test, taking history, and admitting/discharging the patient). These Actions include
properties such as their Duration (as either a single value Time or a DistributionTable), the
required Staff, and whether the patient is required to be present during the action. Branches between
actions specify the order of operation for the Actions and can optionally have associated ‘conditions’
implemented as KernelF Expressions (Völter 2018). These conditions are evaluated during simulation
to determine whether the next Action can be started or not.

3.2.1 Defining the COVID-19 Action Cards

First, we implemented the baseline action card in our DSML. This required some clarification from our
domain experts on more fine-grained details such as the staff involved in each action, the location, and the
duration. The representation of the action card in our DSML is shown in Figure 4a.

We specified the series of actions staff must take during the patient pathway from initial triage and
LFT testing to admission. Each step is defined as its own Action with properties such as the duration,
required Staff, and whether the patient needs to present or not. The sub-types of the I_Duration
definition meant that we could capture some actions (such as Triage) using a static Time value and other
actions (such as the Symptomatic check) using a DistributionTable on a case-per-case basis, and
swap between these as necessary without impacting the rest of the model.
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3.3 People Module

Shown in the bottom of Figure 3: The people module is used to capture patients and staff. The
PatientCohort concept captures the properties of patients via AttributeTables which define the
prevalence distribution of different Attributes in patients. For example, the Severity Attribute
represents the seriousness of the patient’s condition and hence what area of the ED they should be streamed to.
Attributes can be referenced via an AttributeReference which is a sub-type of Expressions,
and so can be included in Branch conditional statements.

Staff are defined by their name and patient allocation limit (i.e. the maximum number of patients the
staff can be assigned to at one time). The default location for Staff is defined by a reference to the Room
concept in the built environment language. If defined, Staff will start the simulation in this location
and will return there when idle. The module generator includes default behaviours for patient selection in
which staff prioritise seeing patients to which they are currently assigned. If there are no such patients, and
the staff member has not yet reached their patient allocation limit, then they will allocate themselves to
a new waiting patient. These behaviours are written using sub-types of the MessageSelectionRule
concept in the agent language discussed in section 3.7. The different concept sub-types will allow us to
implement specific selection strategies in future work without impacting the rest of the model definition.

3.4 Built Environment Language

Shown in the middle of Figure 3: The built environment language contains concepts for capturing physical
space as sub-types of Locatables with an x,y location and width and height properties. Areas represent
collections of Rooms, which can contain Occupiables such as chairs, desks, etc. In the future, we
can add new types of furniture, etc. by creating new sub-types of the Occupiable concept. Areas
can be subdivided by adding Walls which cannot be traversed by agents in the model. Rooms have an
associated RoomType to group collections of rooms such as cubicles, receptions, etc. Resources can
be used to define items such as test cartridges, etc. and have properties to capture the starting quantity of
the Resource as well as the replenishment frequency and quantity.

3.4.1 Defining the St. Thomas’ Emergency Department Environment.

A representation of the St. Thomas’ ED implemented using our built environment language is shown in
Figure 4b. Each Room is represented by a rectangle and is coloured according to the RoomType. The
grey squares represent Occupiables which include chairs in waiting rooms and beds in cubicles. The
built environment language uses a dual-projection concrete syntax. Locatables are defined textually
and a graphical representation of the built environment is displayed simultaneously to assist with model
readability. In the future, we can implement more detailed architectural models by extending the existing
DSML concepts with additional properties and alternative abstract syntax.

3.5 Disease Module

Shown in the left of Figure 3: The disease module captures the properties of infectious diseases. The
Disease concept can have related Symptoms and Tests used to detect the disease. We extend
the Attribute concept in the people module to add an InfectionStatus property for patients.
This property defines, for each Disease, whether the patient is Infected (including Symptomatic or
Asymptomatic) or if they are Susceptible as inspired by compartment models in epidemiology (Brauer
2008).

The module includes two sub-types ofTest: SampleTest andObservationTest. SampleTests
represent black-box tests with sensitivity and specificity values. ObservationTests replicate medical
assessments mechanistically by checking the presence of Symptoms in patients. SampleTests are a
sub-type of the Resource concept and so can be supplied a starting quantity, replenishment frequency, and



Godfrey, Batra, Douthwaite, Edgeworth, Edwards, Miles, and Zschaler

Area allocation. The Result concept represents the range of outcomes a Test can produce. Results
are sub-types of Attributes and so can be evaluated as part of Branch conditions. Each Test can
reference an ActionCard to specify the series of actions that staff must complete whenever the test
is administered. CompositeTests represent collections of Tests that can be referenced as a single
object by actions. SelectionRules can be used to define which specific test within this group should
be used in different scenarios. Expression statements within SelectionRules allow us to reference
Attributes of patients etc. for decision-making.

The InfectivityTable is used to define how Diseases spread between patients and is inspired
by (Laskowski et al. 2011). For each Disease, the user can specify its spreadChance per second based
on Attributes of the spreader and/or receiver, as well as the distance between the two people.

3.5.1 Defining the COVID-19 Disease and Related Tests

We implemented a COVID-19 Disease and an AttributeTable for the distribution of patients’
InfectionStatus. We then defined two types of SampleTest: LFT and LabPCR, which included
COVID-19 as their CapturedDisease and were given appropriate sensitivity and specificity values
based on data collected from clinical trials (Merrick et al. 2021). A RapidPCR CompositeTest was
implemented to capture two sub-types of the rapid-PCR test in use in the ED —each with their own distinct
properties such as duration, sensitivity, and specificity. A SelectionRule was defined to state that
one type of test should be used during daylight hours and the other test should be used during the night.
We implemented an ObservationTest to represent the check staff perform to detect if a patient is
symptomatic for COVID-19. We defined a set of Symptoms and associated them with the COVID-19
Disease via the ‘presentsWith’ reference. As a sub-type of the Attribute concept in the patient
language, these Symptoms were given associated prevalence rates in their AttributeTables. We
referenced these Symptoms in our ObservationTest via the ‘positiveIf’ reference.

3.6 Simulation Module

Shown in the right of Figure 3: The simulation language exposes concepts for configuring simulation
experiments as Scenarios. In a Scenario, the user can define the type and quantity of Staff to
include via a StaffMap, the length of simulation runs, the tick rate, and the number of run repetitions.
Changing the tick rate of the simulation will automatically adjust all timing-based properties of the model
definition during generation.

3.7 Agent Language

Figure 5: The agent language meta-model.

Rather than translating models directly into general-purpose programming code, we implemented an
intermediary agent-based language inspired by actor languages (Agha 1986). Every model implemented
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in the healthcare DSML modules is automatically generated into this agent language, which itself can
be automatically generated into Repast Simphony code (North et al. 2013). The language (shown in
Figure 5) expresses models according to Agents with associated Attributes, Behaviours and
Relationships (i.e. networks of associations between different agents that can be created and removed
during runtime).

Behaviours contain a BehaviourSequence of BehaviourElements. Different sub-types
of BehaviourElements represent basic actions for agents to complete. This includes: Updating
the value of the agent’s attribute via an AttributeExp (UpdateAttribute), moving to a location
(GoTo), staying at the current location until a condition is met (StayUntil), updating a Relationship
(UpdateRelationship), and sending a Message (SendMessage). The Message concept contains
a set of DataSlots which are name, type pairs allowing Agents to share information regarding
instances of other Agents, etc. via a DataAccessExp. Choices add flow operations, defining which
BehaviourSequence should be followed according to the outcome of an Expression conditional
statement.

Behaviours are triggered either by time (ScheduledBehaviour) or by the receipt of a Message
(TriggeredBehaviour). Scheduled behaviours have a starting tick and an optional repeats tick
frequency. Triggered behaviours are executed when the associated Message is received by the owning
agent. Behaviours can have Preconditions in the form of Expressions that will be evaluated
to determine if the agent will start the behaviour or not. For example, by default, all Behaviours that
involve moving to a RoomType will automatically have a pre-condition to check that there exists a Room
of the given type that is not currently occupied.

The MessageSelectionStrategy concept is used to define how agents select Messages. The
strategy sub-types define the selection semantics: ByAttribute involves evaluating the value of the
sending Agent’s Attribute, ByRelationship involves checking if the sender is in the set of
Relationships of the receiving Agent, and FIFO prioritises Messages that were sent less recently.
MessageSelectionStrategies are used to implement PatientSelectionStrategies in the
people module. The ‘patient allocation limit’ of Staff is translated into a Relationship, and the
status of this Relationship is evaluated by each Agent of the correct type. Every time an Action is
completed, a Message is sent which is accessible to all Agents of the StaffType who can perform the
Patient’s next Action. The DataSlot for that Message contains the Patient instance. The first
Agent that meets all conditions of their MessageSelectionStrategy will remove that Message
and select the contained Patient instance for their next Action.

3.8 Model Execution

Models expressed in the DSML are generated into Repast Simphony code (North et al. 2013). Repast
Simphony includes functions for agent scheduling, parameter sweeps, visual interfaces, and model data
collection. We use RRepast (García and Rodríguez-Patón 2016) (An R package that interfaces with Repast
Simphony) to assist with sensitivity analysis of our models. All model parameters are automatically
generated into Repast parameter XML files which can be read by RRepast scripts. During generation,
Agents are converted into Repast agent classes. Attributes are translated into variables within
those classes and Repast parameters so that they can be referenced and manipulated during batch runs.
Messages are converted into classes which are referenced by generated TriggeredBehaviour meth-
ods. ScheduledBehaviours are translated into methods with the ‘Schedule’ annotation so that they
can be recognised by the Repast scheduler. BehaviourSteps are converted into inner classes within
the agent classes and are instantiated as needed at run-time.
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(a) Using both LFT and rapid-PCR
testing.

(b) Using only LFTs. (c) Using only rapid-PCRs.

Figure 6: The COVID-19 testing action cards.

4 CASE STUDIES

In this section, we discuss two case studies conducted in collaboration with London-based NHS EDs. In
each study, we used our DSML to develop models to explore potential interventions to the ED with the
goal of satisfying the KPIs discussed in section 1: Resource usage, patient flow, and patient safety.

4.1 COVID-19 Case Study Results and Discussion

In section 3, we discussed how our DSML was used to capture domain processes for a COVID-19 case study.
We modelled a baseline action card and two prospective action cards and ran simulation experiments to
compare the relative directional changes to the three KPIs discussed in section 3.1. For each ActionCard,
we ran the model for 7 days simulation time with a tick rate of 60 seconds and a warm-in period of 1 day.
We ran repeats of each model across COVID-19 prevalence rates between 0.25% to 1% at 0.25% intervals.
Stability analysis showed that we needed to execute 50 repetitions of our model in order for stochastic
effects to normalise. To calibrate the model, we compared our model outputs to real-world aggregated data
collected from the ED.

During calibration, we found that the model outputs included a much lower use of rapid-PCR tests
than observed in real-world data. This test type was used in instances where there was a discrepant result
between the triage ObservationTest and the LFT result. If there were fewer discrepancies, then the
use of the rapid-PCR would be lower, leading us to understand that our ObservationTest had been
modelled as more accurate than observed in the real world. Subsequently, we refactored our model to
capture the triage checks as a SampleTest instead. We calibrated the sensitivity and specificity values of
this test with a parameter sweep using data collected from the ED. As both of these test types are sub-types
of the Test concept, their respective references in the action card language were unaffected, and all other
aspects of the model did not need to be refactored.

We conducted face validity of our model with a small group of domain experts. The healthcare-focused
language design allowed us to show action cards directly within our DSML and discuss any ambiguities.
Clinicians were able to understand the DSML without previous training and were able to identify potential
issues with a proposed action card, sparking a discussion on its real-world implications on clinical practice
even before executing the model.

Our model results suggested that the baseline action card using both rapid-PCR and LFT (action card
6a) was the most effective: there was the lowest risk of a COVID-19-positive patient being admitted to an
amber bay. Replacing rapid-PCR testing with Lab-based PCR testing (action card 6b) did not significantly
affect risk for the tested COVID-19 prevalence rates, but patient waiting times were increased due to the
longer processing times of Lab-based PCR tests. Removing LFT testing and relying on symptomatic checks
at triage (action card 6c) resulted in a significant increase in risk. The probability of COVID-19-positive
patients being admitted to an amber bay was 3 times higher than the baseline at 1% community prevalence
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for COVID-19, suggesting that this action card was unlikely to perform adequately in the real world with
respect to the tested KPIs.

4.2 Group A Streptococcus

In December 2022, the NHS received a significant increase in paediatric attendances due to a rise in GAS
cases in the UK (Singh 2022). This put increased strain on the Kings’ College Hospital (KCH) paediatric
department. It became crucial that staff manage the flow of patients such that serious illnesses could be
detected and isolated early. Existing guidelines at KCH did not include an early-detection protocol for
GAS. Mild and serious cases were mixed, both with each other and with patients presenting with non-GAS
illnesses, contributing to a significant rise in patient waiting times. We wished to explore the potential for
a new triage system that would isolate GAS cases early in the patient journey. The new process would
require a small set of staff to be exclusively dedicated to GAS triage, moving them away from their typical
roles in the department. The question was whether a dedicated GAS-triage action card would impact the
following KPIs when compared to the baseline existing process: 1. The early detection rate of GAS cases
as measured by patient time-until-seen and 2. The average patient length of stay

We developed our model in collaboration with a senior clinician at KCH. While formalising the details
of Actions in our DSML, we simultaneously updated a real-world action card to help facilitate discussion
between domain experts before running model experiments. Our DSML concepts could be reused for
this study. The DSML structure provided the groundwork of domain analysis (Godfrey et al. 2022) and
provided a framework for which we could rapidly instantiate concepts to capture new domain processes.
We implemented two PatientCohorts with respective ArrivalRates and AttributeTables,
including prevalence for a new Group A Strep Disease. One cohort included GAS patients and the
other included non-GAS patients. 40% of the GAS cohort had a symptomatic InfectionStatus for
GAS (0% in the non-GAS cohort) and their ArrivalRate had a higher concentration of patients during
daylight hours to capture the domain property that GAS attendances were more likely during the day than
during the night at KCH. The baseline model and the GAS triage model include the same pool of Staff:
3 majors doctors, 3 majors nurses, 2 minors doctors, 2 minors nurses, and 2 senior doctors. However, in
the GAS triage process, 1 senior doctor and 1 majors nurse are instead converted into GAS staff.

Each model run represented a 7-day period with a tick rate of 60 seconds and a warm-in period of
1 day. During calibration, we found that patient LoS was significantly higher than observed in the real
world. When observing model behaviours during simulation runs, we found that patients were crowding
in waiting rooms after triage. The nurses were overloaded with patients resulting in long waiting times.
Through discussion with our domain expert, we established that the likely cause of this issue was that
our model explicitly encoded patient waiting times within the duration of some actions. For example, our
action cards stated that patients must wait for a set period of time before discharge therefore artificially
inflating the patient LoS in an attempt to abstract treatment processes. This led to a deeper discussion of
domain processes, benefiting not just the development of our model, but also facilitating further analysis
of real-world processes. While our preliminary results indicate that the GAS triage process does not
significantly increase patient LoS, and does reduce time-until-seen in comparison to the baseline, future
work will focus on the further calibration of our model to real-world data once it is available for access.

5 CONCLUSION AND FUTURE WORK

In section 1, we listed the requirements for our DSML. Requirement 1 concerned the scope of our DSML
for capturing ED processes and requirement 2 concerned the generalisability of our language for different
case studies. Through the case studies discussed in section 4, we have demonstrated that our DSML was
capable of capturing the relevant domain processes for two different case studies, demonstrating that our
language had sufficient scope and generalisability for our current applications. However, the case studies
we have completed so far have all been conducted with London-based NHS EDs with a focus on infection
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control interventions. Further work will focus on testing our DSML generalisability on a wider set of case
studies with different domain problems and environmental contexts.

Requirement 3 concerns the timely production and refactoring of models. Our DSML helps facilitate
this through the reuse of language concepts across different case studies. Because our DSML uses high-
abstraction concepts, model construction and refactoring involves a significantly lower number of statements
compared to using a general-purpose programming language or technical agent-oriented language. Language
concepts such as action cards, diseases, and tests, abstract away from technical implementation details.
Users can generate and manipulate large blocks of logic without concerning themselves with the underlying
implementation. For example, if an Action is defined that requires a majors cubicle Room, then the user
does not need to specify how the staff agents will move to that room, or how the room will be perceived
as ‘occupied’ and thus unavailable to other agents. A potential concern is that the high abstraction level
of our DSML concepts could reduce coverage such that certain domain processes could not be captured
in the language as-is (Völter et al. 2013). The modular nature of our DSML design supports language
refactoring and extension (Godfrey et al. 2022). However, future case studies will expose the complexity
of this process, and thus the suitability of our DSML for the healthcare domain where model development
must be fast-paced.

Requirement 4 concerns the accessibility and usability of our DSML. During our case studies, we were
able to demonstrate and discuss our models intermittently during their development. The domain experts
were able to identify real-world processes in the model definitions and identify inaccuracies where they
occurred. For example, in the GAS case study in section 4.2, we were able to collaboratively develop
an action card in our DSML, engaging domain experts in model implementation. An important aspect of
language accessibility is the model complexity exposed to the user. With the modular design of our DSML,
we can manipulate the scope and level-of-detail of domain concepts included in each model, and the level
of detail at which we choose to model processes. Only the domain details relevant to the problem, the
simulation experiments, and available data in which to evaluate those experiments need to be explicitly
encoded and extraneous detail can be ignored by the model developer. For example, in the GAS case
study, we could have modelled the triage process as an ObservationTest such that the symptom
Attributes of patients that match those of GAS are checked in order to provide a positive or negative
outcome. However, the resolution of patient symptom data available at the time of the study was not
sufficient and it was instead more appropriate to explicitly encode triage results as probability functions
in our action card Branches. Should we have access to sufficient data on GAS symptom prevalence in
paediatric attendances at KCH, we could swap these probability functions for an ObservationTest
conditional statement in the Branches, without impacting the structure of the rest of the model.

While the DSML is not yet suitable for domain experts to manipulate models independently, the
languages are accessible enough for domain experts to read, understand, and identify errors in models.
Future work will involve conducting formal usability studies such as those discussed in Alaca et al. (2021)
and exploring the generalisability of our DSML to further healthcare case studies in new contexts such as
non-UK hospitals.
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